398 lines
9.6 KiB
C
398 lines
9.6 KiB
C
#include "triangle.h"
|
|
#include "linalg.h"
|
|
#include "mat.h"
|
|
|
|
#include <gsl/gsl_poly.h>
|
|
#include <mps/mps.h>
|
|
|
|
//#define MAX_ELEMENTS 2800000
|
|
//#define MAX_ELEMENTS 720000
|
|
#define MAX_ELEMENTS 1000
|
|
//#define DRAW_PICTURE 1
|
|
|
|
#define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0);
|
|
|
|
int solve_characteristic_polynomial(mps_context *solv, mpq_t tr, mpq_t trinv, double *eigenvalues)
|
|
{
|
|
mpq_t coeff1, coeff2, zero;
|
|
cplx_t *roots;
|
|
double radii[3];
|
|
double *radii_p[3];
|
|
mps_monomial_poly *poly;
|
|
mps_boolean errors;
|
|
int result = 0;
|
|
|
|
mpq_inits(coeff1, coeff2, zero, NULL);
|
|
mpq_set(coeff1, trinv);
|
|
mpq_sub(coeff2, zero, tr);
|
|
|
|
poly = mps_monomial_poly_new(solv, 3);
|
|
mps_monomial_poly_set_coefficient_int(solv, poly, 0, -1, 0);
|
|
mps_monomial_poly_set_coefficient_q(solv, poly, 1, coeff1, zero);
|
|
mps_monomial_poly_set_coefficient_q(solv, poly, 2, coeff2, zero);
|
|
mps_monomial_poly_set_coefficient_int(solv, poly, 3, 1, 0);
|
|
|
|
mps_context_set_input_poly(solv, (mps_polynomial*)poly);
|
|
mps_mpsolve(solv);
|
|
|
|
roots = cplx_valloc(3);
|
|
for(int i = 0; i < 3; i++)
|
|
radii_p[i] = &(radii[i]);
|
|
mps_context_get_roots_d(solv, &roots, radii_p);
|
|
errors = mps_context_has_errors(solv);
|
|
|
|
if(errors) {
|
|
result = 1;
|
|
} else {
|
|
for(int i = 0; i < 3; i++) {
|
|
eigenvalues[i] = cplx_Re(roots[i]);
|
|
if(fabs(cplx_Im(roots[i])) > radii[i]) // non-real root
|
|
result = 2;
|
|
}
|
|
}
|
|
|
|
cplx_vfree(roots);
|
|
mpq_clears(coeff1, coeff2, zero, NULL);
|
|
|
|
return result;
|
|
}
|
|
|
|
void continued_fraction_approximation(mpq_t out, double in, int level)
|
|
{
|
|
mpq_t tmp;
|
|
|
|
if(in < 0) {
|
|
mpq_init(tmp);
|
|
mpq_set_ui(tmp, 0, 1);
|
|
continued_fraction_approximation(out, -in, level);
|
|
mpq_sub(out, tmp, out);
|
|
mpq_clear(tmp);
|
|
return;
|
|
}
|
|
|
|
if(level == 0) {
|
|
mpq_set_si(out, (signed long int)round(in), 1); // floor(in)
|
|
} else {
|
|
continued_fraction_approximation(out, 1/(in - floor(in)), level - 1);
|
|
mpq_init(tmp);
|
|
mpq_set_ui(tmp, 1, 1);
|
|
mpq_div(out, tmp, out); // out -> 1/out
|
|
mpq_set_si(tmp, (signed long int)in, 1); // floor(in)
|
|
mpq_add(out, out, tmp);
|
|
mpq_clear(tmp);
|
|
}
|
|
}
|
|
|
|
void quartic(mpq_t out, mpq_t in, int a, int b, int c, int d, int e)
|
|
{
|
|
mpq_t tmp;
|
|
mpq_init(tmp);
|
|
|
|
mpq_set_si(out, a, 1);
|
|
mpq_mul(out, out, in);
|
|
mpq_set_si(tmp, b, 1);
|
|
mpq_add(out, out, tmp);
|
|
mpq_mul(out, out, in);
|
|
mpq_set_si(tmp, c, 1);
|
|
mpq_add(out, out, tmp);
|
|
mpq_mul(out, out, in);
|
|
mpq_set_si(tmp, d, 1);
|
|
mpq_add(out, out, tmp);
|
|
mpq_mul(out, out, in);
|
|
mpq_set_si(tmp, e, 1);
|
|
mpq_add(out, out, tmp);
|
|
|
|
mpq_clear(tmp);
|
|
}
|
|
|
|
void initialize_triangle_generators(mat_workspace *ws, mat *gen, mpq_t s, mpq_t q)
|
|
{
|
|
mat r1,r2,r3;
|
|
mpq_t rho1, rho2, rho3;
|
|
mpq_t b1,c1,a2,c2,a3,b3;
|
|
mpq_t sinv;
|
|
|
|
mpq_inits(sinv,rho1,rho2,rho3,b1,c1,a2,c2,a3,b3,NULL);
|
|
mat_init(r1, 3);
|
|
mat_init(r2, 3);
|
|
mat_init(r3, 3);
|
|
|
|
mpq_set_ui(sinv, 1, 1);
|
|
mpq_div(sinv, sinv, s);
|
|
|
|
quartic(rho1, s, 0, 0, 1, -1, 1);
|
|
quartic(rho2, s, 0, 0, 1, -1, 1);
|
|
quartic(rho3, s, 0, 0, 1, 0, 1);
|
|
|
|
mpq_mul(c1, rho2, q);
|
|
mpq_mul(a2, rho3, q);
|
|
mpq_mul(b3, rho1, q);
|
|
mpq_set_ui(b1, 1, 1);
|
|
mpq_set_ui(c2, 1, 1);
|
|
mpq_set_ui(a3, 1, 1);
|
|
mpq_div(b1, b1, q);
|
|
mpq_div(c2, c2, q);
|
|
mpq_div(a3, a3, q);
|
|
|
|
// actually, we want minus everything
|
|
mat_zero(r1);
|
|
mat_zero(r2);
|
|
mat_zero(r3);
|
|
mpq_set_si(*mat_ref(r1, 0, 0), -1, 1);
|
|
mpq_set_si(*mat_ref(r1, 1, 1), 1, 1);
|
|
mpq_set_si(*mat_ref(r1, 2, 2), 1, 1);
|
|
mpq_set_si(*mat_ref(r2, 0, 0), 1, 1);
|
|
mpq_set_si(*mat_ref(r2, 1, 1), -1, 1);
|
|
mpq_set_si(*mat_ref(r2, 2, 2), 1, 1);
|
|
mpq_set_si(*mat_ref(r3, 0, 0), 1, 1);
|
|
mpq_set_si(*mat_ref(r3, 1, 1), 1, 1);
|
|
mpq_set_si(*mat_ref(r3, 2, 2), -1, 1);
|
|
|
|
mpq_set(*mat_ref(r1, 1, 0), b1);
|
|
mpq_set(*mat_ref(r1, 2, 0), c1);
|
|
mpq_set(*mat_ref(r2, 0, 1), a2);
|
|
mpq_set(*mat_ref(r2, 2, 1), c2);
|
|
mpq_set(*mat_ref(r3, 0, 2), a3);
|
|
mpq_set(*mat_ref(r3, 1, 2), b3);
|
|
|
|
mat_zero(gen[0]);
|
|
mat_zero(gen[1]);
|
|
mat_zero(gen[2]);
|
|
|
|
mpq_set_ui(*mat_ref(gen[0], 0, 0), 1, 1);
|
|
mat_set(gen[0], 1, 1, sinv);
|
|
mat_set(gen[0], 2, 2, s);
|
|
|
|
mat_set(gen[1], 0, 0, s);
|
|
mpq_set_ui(*mat_ref(gen[1], 1, 1), 1, 1);
|
|
mat_set(gen[1], 2, 2, sinv);
|
|
|
|
mat_set(gen[2], 0, 0, sinv);
|
|
mat_set(gen[2], 1, 1, s);
|
|
mpq_set_ui(*mat_ref(gen[2], 2, 2), 1, 1);
|
|
|
|
mat_multiply(ws, gen[0], r2, gen[0]);
|
|
mat_multiply(ws, gen[0], gen[0], r3);
|
|
mat_multiply(ws, gen[1], r3, gen[1]);
|
|
mat_multiply(ws, gen[1], gen[1], r1);
|
|
mat_multiply(ws, gen[2], r1, gen[2]);
|
|
mat_multiply(ws, gen[2], gen[2], r2);
|
|
|
|
mat_pseudoinverse(ws, gen[3], gen[0]);
|
|
mat_pseudoinverse(ws, gen[4], gen[1]);
|
|
mat_pseudoinverse(ws, gen[5], gen[2]);
|
|
|
|
/*
|
|
mat_print(r1);
|
|
mat_print(r2);
|
|
mat_print(r3);
|
|
mat_print(gen[0]);
|
|
mat_print(gen[1]);
|
|
mat_print(gen[2]);
|
|
mat_print(gen[3]);
|
|
mat_print(gen[4]);
|
|
mat_print(gen[5]);
|
|
*/
|
|
|
|
mpq_clears(sinv,rho1,rho2,rho3,b1,c1,a2,c2,a3,b3,NULL);
|
|
mat_clear(r1);
|
|
mat_clear(r2);
|
|
mat_clear(r3);
|
|
}
|
|
|
|
char *print_word(groupelement_t *g, char *str)
|
|
{
|
|
int i = g->length - 1;
|
|
|
|
str[g->length] = 0;
|
|
while(g->parent) {
|
|
str[i--] = 'a' + g->letter;
|
|
g = g->parent;
|
|
}
|
|
|
|
return str;
|
|
}
|
|
|
|
void enumerate(groupelement_t *group, mat *matrices, mpq_t s, mpq_t t)
|
|
{
|
|
mat_workspace *ws;
|
|
mat tmp;
|
|
mat gen[6];
|
|
char buf[100], buf2[100], buf3[100];
|
|
|
|
// allocate stuff
|
|
ws = mat_workspace_init(3);
|
|
for(int i = 0; i < 6; i++)
|
|
mat_init(gen[i], 3);
|
|
mat_init(tmp, 3);
|
|
|
|
initialize_triangle_generators(ws, gen, s, t);
|
|
|
|
mat_identity(matrices[0]);
|
|
for(int i = 1; i < MAX_ELEMENTS; i++) {
|
|
if(group[i].length % 2 != 0)
|
|
continue;
|
|
if(!group[i].inverse)
|
|
continue;
|
|
|
|
int parent = group[i].parent->id;
|
|
int grandparent = group[i].parent->parent->id;
|
|
int letter;
|
|
|
|
if(group[parent].letter == 1 && group[i].letter == 2)
|
|
letter = 0; // p = bc
|
|
else if(group[parent].letter == 2 && group[i].letter == 0)
|
|
letter = 1; // q = ca
|
|
else if(group[parent].letter == 0 && group[i].letter == 1)
|
|
letter = 2; // r = ab
|
|
if(group[parent].letter == 2 && group[i].letter == 1)
|
|
letter = 3; // p^{-1} = cb
|
|
else if(group[parent].letter == 0 && group[i].letter == 2)
|
|
letter = 4; // q^{-1} = ac
|
|
else if(group[parent].letter == 1 && group[i].letter == 0)
|
|
letter = 5; // r^{-1} = ba
|
|
|
|
mat_multiply(ws, matrices[i], matrices[grandparent], gen[letter]);
|
|
}
|
|
|
|
// free stuff
|
|
for(int i = 0; i < 6; i++)
|
|
mat_clear(gen[i]);
|
|
mat_clear(tmp);
|
|
mat_workspace_clear(ws);
|
|
}
|
|
|
|
void output_invariants(groupelement_t *group, mat *matrices, mpq_t s, mpq_t q, mps_context *solver)
|
|
{
|
|
mpq_t tr, trinv;
|
|
char buf[100];
|
|
double evs[3];
|
|
int retval;
|
|
|
|
mpq_inits(tr, trinv, NULL);
|
|
|
|
for(int i = 0; i < MAX_ELEMENTS; i++) {
|
|
if(group[i].length % 2 != 0 || !group[i].inverse)
|
|
continue;
|
|
|
|
mat_trace(tr, matrices[i]);
|
|
mat_trace(trinv, matrices[group[i].inverse->id]);
|
|
|
|
retval = solve_characteristic_polynomial(solver, tr, trinv, evs);
|
|
if(retval == 1) {
|
|
fprintf(stderr, "Error! Could not solve polynomial.\n");
|
|
continue;
|
|
} else if(retval == 2) {
|
|
continue;
|
|
}
|
|
|
|
if(fabs(evs[0]) < fabs(evs[1]))
|
|
SWAP(double, evs[0], evs[1]);
|
|
if(fabs(evs[1]) < fabs(evs[2]))
|
|
SWAP(double, evs[1], evs[2]);
|
|
if(fabs(evs[0]) < fabs(evs[1]))
|
|
SWAP(double, evs[0], evs[1]);
|
|
|
|
gmp_printf("%d %d %s %Qd %Qd %f %f\n", i, group[i].length, print_word(&group[i], buf), tr, trinv, log(evs[0]), -log(evs[2]));
|
|
}
|
|
|
|
mpq_clears(tr, trinv, NULL);
|
|
}
|
|
|
|
double max_slope(groupelement_t *group, mat *matrices, mpq_t s, mpq_t t, int *index)
|
|
{
|
|
double max = 0;
|
|
double slope;
|
|
|
|
mpq_t tr, trinv;
|
|
char buf[100];
|
|
|
|
mpq_inits(tr, trinv, NULL);
|
|
|
|
for(int i = 0; i < MAX_ELEMENTS; i++) {
|
|
if(group[i].length % 2 != 0 || !group[i].inverse)
|
|
continue;
|
|
|
|
mat_trace(tr, matrices[i]);
|
|
mat_trace(trinv, matrices[group[i].inverse->id]);
|
|
|
|
slope = log(mpq_get_d(trinv))/log(mpq_get_d(tr));
|
|
if(slope > max)
|
|
{
|
|
*index = i;
|
|
max = slope;
|
|
}
|
|
}
|
|
|
|
mpq_clears(tr, trinv, NULL);
|
|
|
|
return max;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
mpq_t s, q, t, tmp;
|
|
double sapprox, tapprox, qapprox, tqfactor;
|
|
mat *matrices;
|
|
groupelement_t *group;
|
|
int index;
|
|
mps_context *solver;
|
|
|
|
mpq_inits(s, q, t, tmp, NULL);
|
|
group = malloc(MAX_ELEMENTS*sizeof(groupelement_t));
|
|
matrices = malloc(MAX_ELEMENTS*sizeof(mat));
|
|
for(int i = 0; i < MAX_ELEMENTS; i++)
|
|
mat_init(matrices[i], 3);
|
|
|
|
solver = mps_context_new();
|
|
mps_context_set_output_prec(solver, 20); // relative precision
|
|
mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE);
|
|
|
|
int acc = 100;
|
|
|
|
sapprox = atof(argv[1]);
|
|
tapprox = atof(argv[2]);
|
|
tqfactor = pow((sapprox*sapprox-sapprox+1)*(sapprox*sapprox-sapprox+1)*(sapprox*sapprox+1), 1/6.0);
|
|
qapprox = tapprox/tqfactor;
|
|
|
|
for(int i = 0; ; i++) {
|
|
continued_fraction_approximation(tmp, sapprox, i);
|
|
// gmp_fprintf(stdout, "%Qd\n", tmp);
|
|
if(fabs(mpq_get_d(t)-sapprox) < 1e-10 || (mpz_cmpabs_ui(mpq_numref(tmp),acc) > 0 && mpz_cmpabs_ui(mpq_denref(tmp),acc) > 0))
|
|
break;
|
|
mpq_set(s, tmp);
|
|
}
|
|
mpq_canonicalize(s);
|
|
|
|
for(int i = 0; ; i++) {
|
|
continued_fraction_approximation(tmp, qapprox, i);
|
|
// gmp_fprintf(stdout, "%Qd\n", tmp);
|
|
if(fabs(mpq_get_d(t)-qapprox) < 1e-10 || (mpz_cmpabs_ui(mpq_numref(tmp),acc) > 0 && mpz_cmpabs_ui(mpq_denref(tmp),acc) > 0))
|
|
break;
|
|
mpq_set(q, tmp);
|
|
}
|
|
mpq_canonicalize(q);
|
|
|
|
tqfactor = pow((mpq_get_d(s)*mpq_get_d(s)-mpq_get_d(s)+1)*(mpq_get_d(s)*mpq_get_d(s)-mpq_get_d(s)+1)*(mpq_get_d(s)*mpq_get_d(s)+1), 1/6.0);
|
|
|
|
gmp_fprintf(stdout, "\"s = %Qd = %.3f, q = %Qd, t = %.3f\"\n", s, mpq_get_d(s), q, mpq_get_d(q)*tqfactor);
|
|
|
|
generate_triangle_group(group, MAX_ELEMENTS, 3, 3, 4);
|
|
|
|
// for(int i = 0; i < 10; i++) {
|
|
// mpq_set_ui(t,100+i,100);
|
|
// mpq_canonicalize(t);
|
|
|
|
enumerate(group, matrices, s, q);
|
|
//printf("%f %f\n", mpq_get_d(t), max_slope(group, matrices, s, t, &index));
|
|
output_invariants(group, matrices, s, q, solver);
|
|
// }
|
|
|
|
for(int i = 0; i < MAX_ELEMENTS; i++)
|
|
mat_clear(matrices[i]);
|
|
free(matrices);
|
|
free(group);
|
|
mpq_clears(s, q, t, tmp, NULL);
|
|
mps_context_free(solver);
|
|
}
|