#include "triangle.h" #include "linalg.h" #include "mat.h" #include #include //#define MAX_ELEMENTS 2800000 //#define MAX_ELEMENTS 720000 #define MAX_ELEMENTS 1000 //#define DRAW_PICTURE 1 #define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0); int solve_characteristic_polynomial(mps_context *solv, mpq_t tr, mpq_t trinv, double *eigenvalues) { mpq_t coeff1, coeff2, zero; cplx_t *roots; double radii[3]; double *radii_p[3]; mps_monomial_poly *poly; mps_boolean errors; int result = 0; mpq_inits(coeff1, coeff2, zero, NULL); mpq_set(coeff1, trinv); mpq_sub(coeff2, zero, tr); poly = mps_monomial_poly_new(solv, 3); mps_monomial_poly_set_coefficient_int(solv, poly, 0, -1, 0); mps_monomial_poly_set_coefficient_q(solv, poly, 1, coeff1, zero); mps_monomial_poly_set_coefficient_q(solv, poly, 2, coeff2, zero); mps_monomial_poly_set_coefficient_int(solv, poly, 3, 1, 0); mps_context_set_input_poly(solv, (mps_polynomial*)poly); mps_mpsolve(solv); roots = cplx_valloc(3); for(int i = 0; i < 3; i++) radii_p[i] = &(radii[i]); mps_context_get_roots_d(solv, &roots, radii_p); errors = mps_context_has_errors(solv); if(errors) { result = 1; } else { for(int i = 0; i < 3; i++) { eigenvalues[i] = cplx_Re(roots[i]); if(fabs(cplx_Im(roots[i])) > radii[i]) // non-real root result = 2; } } cplx_vfree(roots); mpq_clears(coeff1, coeff2, zero, NULL); return result; } void continued_fraction_approximation(mpq_t out, double in, int level) { mpq_t tmp; if(in < 0) { mpq_init(tmp); mpq_set_ui(tmp, 0, 1); continued_fraction_approximation(out, -in, level); mpq_sub(out, tmp, out); mpq_clear(tmp); return; } if(level == 0) { mpq_set_si(out, (signed long int)round(in), 1); // floor(in) } else { continued_fraction_approximation(out, 1/(in - floor(in)), level - 1); mpq_init(tmp); mpq_set_ui(tmp, 1, 1); mpq_div(out, tmp, out); // out -> 1/out mpq_set_si(tmp, (signed long int)in, 1); // floor(in) mpq_add(out, out, tmp); mpq_clear(tmp); } } void quartic(mpq_t out, mpq_t in, int a, int b, int c, int d, int e) { mpq_t tmp; mpq_init(tmp); mpq_set_si(out, a, 1); mpq_mul(out, out, in); mpq_set_si(tmp, b, 1); mpq_add(out, out, tmp); mpq_mul(out, out, in); mpq_set_si(tmp, c, 1); mpq_add(out, out, tmp); mpq_mul(out, out, in); mpq_set_si(tmp, d, 1); mpq_add(out, out, tmp); mpq_mul(out, out, in); mpq_set_si(tmp, e, 1); mpq_add(out, out, tmp); mpq_clear(tmp); } void initialize_triangle_generators(mat_workspace *ws, mat *gen, mpq_t s, mpq_t q) { mat r1,r2,r3; mpq_t rho1, rho2, rho3; mpq_t b1,c1,a2,c2,a3,b3; mpq_t sinv; mpq_inits(sinv,rho1,rho2,rho3,b1,c1,a2,c2,a3,b3,NULL); mat_init(r1, 3); mat_init(r2, 3); mat_init(r3, 3); mpq_set_ui(sinv, 1, 1); mpq_div(sinv, sinv, s); quartic(rho1, s, 0, 0, 1, -1, 1); quartic(rho2, s, 0, 0, 1, -1, 1); quartic(rho3, s, 0, 0, 1, 0, 1); mpq_mul(c1, rho2, q); mpq_mul(a2, rho3, q); mpq_mul(b3, rho1, q); mpq_set_ui(b1, 1, 1); mpq_set_ui(c2, 1, 1); mpq_set_ui(a3, 1, 1); mpq_div(b1, b1, q); mpq_div(c2, c2, q); mpq_div(a3, a3, q); // actually, we want minus everything mat_zero(r1); mat_zero(r2); mat_zero(r3); mpq_set_si(*mat_ref(r1, 0, 0), -1, 1); mpq_set_si(*mat_ref(r1, 1, 1), 1, 1); mpq_set_si(*mat_ref(r1, 2, 2), 1, 1); mpq_set_si(*mat_ref(r2, 0, 0), 1, 1); mpq_set_si(*mat_ref(r2, 1, 1), -1, 1); mpq_set_si(*mat_ref(r2, 2, 2), 1, 1); mpq_set_si(*mat_ref(r3, 0, 0), 1, 1); mpq_set_si(*mat_ref(r3, 1, 1), 1, 1); mpq_set_si(*mat_ref(r3, 2, 2), -1, 1); mpq_set(*mat_ref(r1, 1, 0), b1); mpq_set(*mat_ref(r1, 2, 0), c1); mpq_set(*mat_ref(r2, 0, 1), a2); mpq_set(*mat_ref(r2, 2, 1), c2); mpq_set(*mat_ref(r3, 0, 2), a3); mpq_set(*mat_ref(r3, 1, 2), b3); mat_zero(gen[0]); mat_zero(gen[1]); mat_zero(gen[2]); mpq_set_ui(*mat_ref(gen[0], 0, 0), 1, 1); mat_set(gen[0], 1, 1, sinv); mat_set(gen[0], 2, 2, s); mat_set(gen[1], 0, 0, s); mpq_set_ui(*mat_ref(gen[1], 1, 1), 1, 1); mat_set(gen[1], 2, 2, sinv); mat_set(gen[2], 0, 0, sinv); mat_set(gen[2], 1, 1, s); mpq_set_ui(*mat_ref(gen[2], 2, 2), 1, 1); mat_multiply(ws, gen[0], r2, gen[0]); mat_multiply(ws, gen[0], gen[0], r3); mat_multiply(ws, gen[1], r3, gen[1]); mat_multiply(ws, gen[1], gen[1], r1); mat_multiply(ws, gen[2], r1, gen[2]); mat_multiply(ws, gen[2], gen[2], r2); mat_pseudoinverse(ws, gen[3], gen[0]); mat_pseudoinverse(ws, gen[4], gen[1]); mat_pseudoinverse(ws, gen[5], gen[2]); /* mat_print(r1); mat_print(r2); mat_print(r3); mat_print(gen[0]); mat_print(gen[1]); mat_print(gen[2]); mat_print(gen[3]); mat_print(gen[4]); mat_print(gen[5]); */ mpq_clears(sinv,rho1,rho2,rho3,b1,c1,a2,c2,a3,b3,NULL); mat_clear(r1); mat_clear(r2); mat_clear(r3); } char *print_word(groupelement_t *g, char *str) { int i = g->length - 1; str[g->length] = 0; while(g->parent) { str[i--] = 'a' + g->letter; g = g->parent; } return str; } void enumerate(groupelement_t *group, mat *matrices, mpq_t s, mpq_t t) { mat_workspace *ws; mat tmp; mat gen[6]; char buf[100], buf2[100], buf3[100]; // allocate stuff ws = mat_workspace_init(3); for(int i = 0; i < 6; i++) mat_init(gen[i], 3); mat_init(tmp, 3); initialize_triangle_generators(ws, gen, s, t); mat_identity(matrices[0]); for(int i = 1; i < MAX_ELEMENTS; i++) { if(group[i].length % 2 != 0) continue; if(!group[i].inverse) continue; int parent = group[i].parent->id; int grandparent = group[i].parent->parent->id; int letter; if(group[parent].letter == 1 && group[i].letter == 2) letter = 0; // p = bc else if(group[parent].letter == 2 && group[i].letter == 0) letter = 1; // q = ca else if(group[parent].letter == 0 && group[i].letter == 1) letter = 2; // r = ab if(group[parent].letter == 2 && group[i].letter == 1) letter = 3; // p^{-1} = cb else if(group[parent].letter == 0 && group[i].letter == 2) letter = 4; // q^{-1} = ac else if(group[parent].letter == 1 && group[i].letter == 0) letter = 5; // r^{-1} = ba mat_multiply(ws, matrices[i], matrices[grandparent], gen[letter]); } // free stuff for(int i = 0; i < 6; i++) mat_clear(gen[i]); mat_clear(tmp); mat_workspace_clear(ws); } void output_invariants(groupelement_t *group, mat *matrices, mpq_t s, mpq_t q, mps_context *solver) { mpq_t tr, trinv; char buf[100]; double evs[3]; int retval; mpq_inits(tr, trinv, NULL); for(int i = 0; i < MAX_ELEMENTS; i++) { if(group[i].length % 2 != 0 || !group[i].inverse) continue; mat_trace(tr, matrices[i]); mat_trace(trinv, matrices[group[i].inverse->id]); retval = solve_characteristic_polynomial(solver, tr, trinv, evs); if(retval == 1) { fprintf(stderr, "Error! Could not solve polynomial.\n"); continue; } else if(retval == 2) { continue; } if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); if(fabs(evs[1]) < fabs(evs[2])) SWAP(double, evs[1], evs[2]); if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); gmp_printf("%d %d %s %Qd %Qd %f %f\n", i, group[i].length, print_word(&group[i], buf), tr, trinv, log(evs[0]), -log(evs[2])); } mpq_clears(tr, trinv, NULL); } double max_slope(groupelement_t *group, mat *matrices, mpq_t s, mpq_t t, int *index) { double max = 0; double slope; mpq_t tr, trinv; char buf[100]; mpq_inits(tr, trinv, NULL); for(int i = 0; i < MAX_ELEMENTS; i++) { if(group[i].length % 2 != 0 || !group[i].inverse) continue; mat_trace(tr, matrices[i]); mat_trace(trinv, matrices[group[i].inverse->id]); slope = log(mpq_get_d(trinv))/log(mpq_get_d(tr)); if(slope > max) { *index = i; max = slope; } } mpq_clears(tr, trinv, NULL); return max; } int main(int argc, char *argv[]) { mpq_t s, q, t, tmp; double sapprox, tapprox, qapprox, tqfactor; mat *matrices; groupelement_t *group; int index; mps_context *solver; mpq_inits(s, q, t, tmp, NULL); group = malloc(MAX_ELEMENTS*sizeof(groupelement_t)); matrices = malloc(MAX_ELEMENTS*sizeof(mat)); for(int i = 0; i < MAX_ELEMENTS; i++) mat_init(matrices[i], 3); solver = mps_context_new(); mps_context_set_output_prec(solver, 20); // relative precision mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE); int acc = 100; sapprox = atof(argv[1]); tapprox = atof(argv[2]); tqfactor = pow((sapprox*sapprox-sapprox+1)*(sapprox*sapprox-sapprox+1)*(sapprox*sapprox+1), 1/6.0); qapprox = tapprox/tqfactor; for(int i = 0; ; i++) { continued_fraction_approximation(tmp, sapprox, i); // gmp_fprintf(stdout, "%Qd\n", tmp); if(fabs(mpq_get_d(t)-sapprox) < 1e-10 || (mpz_cmpabs_ui(mpq_numref(tmp),acc) > 0 && mpz_cmpabs_ui(mpq_denref(tmp),acc) > 0)) break; mpq_set(s, tmp); } mpq_canonicalize(s); for(int i = 0; ; i++) { continued_fraction_approximation(tmp, qapprox, i); // gmp_fprintf(stdout, "%Qd\n", tmp); if(fabs(mpq_get_d(t)-qapprox) < 1e-10 || (mpz_cmpabs_ui(mpq_numref(tmp),acc) > 0 && mpz_cmpabs_ui(mpq_denref(tmp),acc) > 0)) break; mpq_set(q, tmp); } mpq_canonicalize(q); tqfactor = pow((mpq_get_d(s)*mpq_get_d(s)-mpq_get_d(s)+1)*(mpq_get_d(s)*mpq_get_d(s)-mpq_get_d(s)+1)*(mpq_get_d(s)*mpq_get_d(s)+1), 1/6.0); gmp_fprintf(stdout, "\"s = %Qd = %.3f, q = %Qd, t = %.3f\"\n", s, mpq_get_d(s), q, mpq_get_d(q)*tqfactor); generate_triangle_group(group, MAX_ELEMENTS, 3, 3, 4); // for(int i = 0; i < 10; i++) { // mpq_set_ui(t,100+i,100); // mpq_canonicalize(t); enumerate(group, matrices, s, q); //printf("%f %f\n", mpq_get_d(t), max_slope(group, matrices, s, t, &index)); output_invariants(group, matrices, s, q, solver); // } for(int i = 0; i < MAX_ELEMENTS; i++) mat_clear(matrices[i]); free(matrices); free(group); mpq_clears(s, q, t, tmp, NULL); mps_context_free(solver); }