triangle_reflection_complex/singular_values.c

374 lines
10 KiB
C
Raw Normal View History

2020-08-02 22:48:33 +00:00
#include "coxeter.h"
#include "linalg.h"
#include "mat.h"
#include "enumerate_triangle_group.h"
#include <time.h>
2020-07-30 00:23:15 +00:00
#define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0);
#define DEBUG(msg, ...) fprintf(stderr, "[%10.3f] " msg, runtime(), ##__VA_ARGS__);
//#define DEBUG(msg, ...)
2021-10-01 18:36:56 +00:00
struct result {
int id;
int count;
2021-10-01 18:36:56 +00:00
mpq_t tr;
mpq_t trinv;
double x;
double y;
2021-10-01 18:36:56 +00:00
};
static int compare_result(const void *a_, const void *b_)
2021-04-01 03:45:25 +00:00
{
int d = 0;
2021-04-01 03:45:25 +00:00
struct result **a = (struct result **)a_;
struct result **b = (struct result **)b_;
2021-04-01 03:45:25 +00:00
d = mpq_cmp((*a)->tr,(*b)->tr);
if(d == 0) {
d = mpq_cmp((*a)->trinv, (*b)->trinv);
}
2021-04-01 03:45:25 +00:00
return d;
2021-04-01 03:45:25 +00:00
}
static int compare_result_by_id(const void *a_, const void *b_)
{
int d = 0;
struct result **a = (struct result **)a_;
struct result **b = (struct result **)b_;
return (*a)->id - (*b)->id;
}
static int compare_result_by_tr_trinv_id(const void *a_, const void *b_)
2021-10-01 18:36:56 +00:00
{
int d = 0;
struct result **a = (struct result **)a_;
struct result **b = (struct result **)b_;
2021-10-01 18:36:56 +00:00
d = mpq_cmp((*a)->tr,(*b)->tr);
if(d == 0) {
d = mpq_cmp((*a)->trinv, (*b)->trinv);
if(d == 0) {
d = (*b)->id - (*a)->id;
}
2021-10-01 18:36:56 +00:00
}
return d;
2021-10-01 18:36:56 +00:00
}
2020-08-02 22:48:33 +00:00
static int compare_result_by_slope(const void *a_, const void *b_)
2020-08-02 22:48:33 +00:00
{
int d = 0;
struct result **a = (struct result **)a_;
struct result **b = (struct result **)b_;
double slopea = (*a)->x / (*a)->y;
double slopeb = (*b)->x / (*b)->y;
2020-08-02 22:48:33 +00:00
return slopea > slopeb ? -1 : slopea < slopeb ? 1 : 0;
2020-08-02 22:48:33 +00:00
}
2020-07-30 00:23:15 +00:00
struct timespec starttime;
static void start_timer()
{
clock_gettime(CLOCK_MONOTONIC, &starttime);
}
static double runtime()
{
struct timespec curtime;
double diff;
clock_gettime(CLOCK_MONOTONIC, &curtime);
return (curtime.tv_sec - starttime.tv_sec) + (curtime.tv_nsec - starttime.tv_nsec) / 1e9;
}
int compute_invariants(group_t *group, mat *matrices, struct result **invariants, int *n, int unique)
{
mpq_t tmp;
mps_context *solver;
mps_monomial_poly *poly;
int index;
int ntraces = *n, nuniq;
int retval;
double evs[3];
int max_slope_id;
double max_slope;
char buf[100];
// DEBUG("Compute traces\n");
for(int i = 0; i < ntraces; i++) {
int id = invariants[i]->id;
int invid = group->elements[id].inverse->id;
mat_trace(invariants[i]->tr, matrices[id]);
mat_trace(invariants[i]->trinv, matrices[invid]);
2021-10-01 18:36:56 +00:00
}
2020-08-02 22:48:33 +00:00
if(!unique)
nuniq = ntraces;
else {
// DEBUG("Get unique traces\n");
qsort(invariants, ntraces, sizeof(struct result*), compare_result);
nuniq = 0;
for(int i = 0; i < ntraces; i++) {
if(i == 0 || compare_result(&invariants[i], &invariants[nuniq-1]) != 0) {
invariants[nuniq] = invariants[i];
invariants[nuniq]->count = 1;
nuniq++;
} else {
invariants[nuniq-1]->count++;
int oldlength = group->elements[invariants[nuniq-1]->id].length;
int newlength = group->elements[invariants[i]->id].length;
if(newlength < oldlength)
invariants[nuniq-1]->id = invariants[i]->id;
}
}
}
DEBUG("Solve characteristic polynomials\n");
solver = mps_context_new();
poly = mps_monomial_poly_new(solver, 3);
mps_context_set_output_prec(solver, 20); // relative precision
mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE);
max_slope = 0;
for(int i = 0; i < nuniq; i++) {
retval = solve_characteristic_polynomial(solver, poly, invariants[i]->tr, invariants[i]->trinv, evs);
retval = 0;evs[0] = 2;evs[1] = 1;evs[2] = 0.5; // fake solving the polynomial for memory leak test
if(retval == 1) {
fprintf(stderr, "Error! Could not solve polynomial.\n");
continue;
} else if(retval == 2) {
continue;
2021-10-01 18:36:56 +00:00
}
2021-04-01 03:45:25 +00:00
if(fabs(evs[0]) < fabs(evs[1]))
SWAP(double, evs[0], evs[1]);
if(fabs(evs[1]) < fabs(evs[2]))
SWAP(double, evs[1], evs[2]);
if(fabs(evs[0]) < fabs(evs[1]))
SWAP(double, evs[0], evs[1]);
2021-04-01 03:45:25 +00:00
double x = log(fabs(evs[0]));
double y = -log(fabs(evs[2]));
2021-10-01 18:36:56 +00:00
invariants[i]->x = x;
invariants[i]->y = y;
2020-08-02 22:48:33 +00:00
if(y/x > max_slope + 1e-12 && (x > 0.1 || y > 0.1)) {
max_slope_id = invariants[i]->id;
max_slope = y/x;
} else if(y/x > max_slope - 1e-12 && (x > 0.1 || y > 0.1)) {
// DEBUG("%s didn't quite make it\n",
// print_word(&group->elements[invariants[i]->id], buf));
}
}
mps_context_free(solver);
2021-10-01 18:36:56 +00:00
qsort(invariants, nuniq, sizeof(struct result*), compare_result_by_id);
2021-10-01 18:36:56 +00:00
*n = nuniq;
return max_slope_id;
}
long check_memory_usage(mat *matrices, int n)
{
mpq_t x;
long total;
for(int i = 0; i < n; i++)
{
LOOP(j,3) LOOP(k,3) {
total += mpq_numref(M(matrices[i], j, k))->_mp_size;
total += mpq_denref(M(matrices[i], j, k))->_mp_size;
}
}
return total;
}
int main(int argc, char *argv[])
{
mpq_t s, q, t, tmp;
int p1, p2, p3;
int sstart, send, sdenom, qstart, qend, qdenom;
mat *matrices;
group_t *group;
int nmax, n;
int max_slope_id;
char buf[100];
char buf2[100];
struct result *invariants;
struct result **distinct_invariants;
start_timer();
mpq_inits(s, q, t, tmp, NULL);
if(argc < 11) {
fprintf(stderr, "Usage: %s <N> <p1> <p2> <p3> <s start> <s end> <s denom> <q start> <q end> <q denom>\n", argv[0]);
exit(1);
}
nmax = atoi(argv[1]);
p1 = atoi(argv[2]);
p2 = atoi(argv[3]);
p3 = atoi(argv[4]);
sstart = atoi(argv[5]);
send = atoi(argv[6]);
sdenom = atoi(argv[7]);
qstart = atoi(argv[8]);
qend = atoi(argv[9]);
qdenom = atoi(argv[10]);
DEBUG("Allocate\n");
matrices = malloc(nmax*sizeof(mat));
for(int i = 0; i < nmax; i++)
mat_init(matrices[i], 3);
invariants = malloc(nmax*sizeof(struct result));
distinct_invariants = malloc(nmax*sizeof(struct result));
for(int i = 0; i < nmax; i++) {
mpq_init(invariants[i].tr);
mpq_init(invariants[i].trinv);
}
// order of the triangle reflection generators: a, b, c
// order of the rotation orders: bc, ac, ab
DEBUG("Generate group\n");
group = coxeter_init_triangle(p1, p2, p3, nmax);
// first run; compute all matrices
for(int i = 0; i < group->size; i++)
group->elements[i].need_to_compute = 1;
// use very generic values for the pilot run unless sstart=send and qstart=qend
if(sstart == send && qstart == qend) {
mpq_set_ui(s, sstart, sdenom);
mpq_set_ui(q, qstart, qdenom);
DEBUG("Single run for s = %d/%d, q = %d/%d\n", sstart, sdenom, qstart, qdenom);
} else {
mpq_set_ui(s, 4, 100);
mpq_set_ui(q, 7, 100);
DEBUG("Initial run for s = %d/%d, q = %d/%d\n", 4, 100, 7, 100);
}
DEBUG("Compute matrices\n");
enumerate(group, matrices, p1, p2, p3, s, q);
2021-10-01 18:36:56 +00:00
// prepare array of ids
n = 0;
for(int i = 0; i < group->size; i++)
{
if(group->elements[i].length % 2 != 0 || !group->elements[i].inverse)
continue;
invariants[i].id = i;
distinct_invariants[n++] = &invariants[i];
}
DEBUG("Compute invariants\n");
max_slope_id = compute_invariants(group, matrices, distinct_invariants, &n, 1);
// prepare for next time; don't need to change ids in distinct_invariants!
for(int i = 0; i < group->size; i++)
group->elements[i].need_to_compute = 0;
group->elements[0].need_to_compute = 1;
int multiplication_count = 1;
for(int i = 0; i < n; i++) {
groupelement_t *cur = &group->elements[distinct_invariants[i]->id];
while(cur->need_to_compute == 0) {
cur->need_to_compute = 1;
multiplication_count++;
cur = cur->parent->parent; // also need to compute its even-length ancestors
2021-04-01 03:45:25 +00:00
}
cur = group->elements[distinct_invariants[i]->id].inverse;
while(cur->need_to_compute == 0) {
cur->need_to_compute = 1;
multiplication_count++;
cur = cur->parent->parent;
}
}
DEBUG("Would have needed %d matrix multiplications for %d unique traces up to reflection length %d\n", multiplication_count, n, group->elements[group->size-1].length);
if(sstart != send || qstart != qend) {
for(int sloop = sstart; sloop <= send; sloop++) {
for(int qloop = qstart; qloop <= qend; qloop++) {
DEBUG("Loop for s = %d/%d, q = %d/%d\n", sloop, sdenom, qloop, qdenom);
mpq_set_ui(s, sloop, sdenom);
mpq_set_ui(q, qloop, qdenom);
DEBUG("Compute matrices\n");
enumerate(group, matrices, p1, p2, p3, s, q);
DEBUG("Compute invariants\n");
max_slope_id = compute_invariants(group, matrices, distinct_invariants, &n, 0);
// output
gmp_printf("%Qd %Qd %s\n", s, q,
print_word(&group->elements[max_slope_id], buf));
fflush(stdout);
}
}
} else {
// output
for(int i = 0; i < n; i++) {
double slope = distinct_invariants[i]->y/distinct_invariants[i]->x;
// exclude tr = trinv = 2/1/0/-1/3
mpq_set_si(tmp, 2, 1);
if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0)
continue;
mpq_set_si(tmp, 1, 1);
if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0)
continue;
mpq_set_si(tmp, 0, 1);
if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0)
continue;
mpq_set_si(tmp, -1, 1);
if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0)
continue;
mpq_set_si(tmp, 3, 1);
if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0)
continue;
gmp_printf("%d %d %s %f\n",
distinct_invariants[i]->id, distinct_invariants[i]->count,
print_word(&group->elements[distinct_invariants[i]->id], buf),
slope
);
/*
gmp_printf("%d %d %d %Qd %Qd %f %f %f %f %f %s\n",
distinct_invariants[i]->id, distinct_invariants[i]->count, cumulative,
distinct_invariants[i]->tr, distinct_invariants[i]->trinv,
log(fabs(mpq_get_d(distinct_invariants[i]->tr))), log(fabs(mpq_get_d(distinct_invariants[i]->trinv))),
distinct_invariants[i]->x, distinct_invariants[i]->y, slope,
print_word(&group->elements[distinct_invariants[i]->id], buf)
);
*/
}
2021-04-01 03:45:25 +00:00
}
DEBUG("Clean up\n");
for(int i = 0; i < nmax; i++) {
mpq_clear(invariants[i].tr);
mpq_clear(invariants[i].trinv);
}
free(invariants);
free(distinct_invariants);
for(int i = 0; i < nmax; i++)
mat_clear(matrices[i]);
free(matrices);
coxeter_clear(group);
mpq_clears(s, q, t, tmp, NULL);
}