#include "coxeter.h" #include "linalg.h" #include "mat.h" #include "enumerate_triangle_group.h" #include #define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0); #define DEBUG(msg, ...) fprintf(stderr, "[%10.3f] " msg, runtime(), ##__VA_ARGS__); //#define DEBUG(msg, ...) struct result { int id; int count; mpq_t tr; mpq_t trinv; double x; double y; }; static int compare_result(const void *a_, const void *b_) { int d = 0; struct result **a = (struct result **)a_; struct result **b = (struct result **)b_; d = mpq_cmp((*a)->tr,(*b)->tr); if(d == 0) { d = mpq_cmp((*a)->trinv, (*b)->trinv); } return d; } static int compare_result_by_id(const void *a_, const void *b_) { int d = 0; struct result **a = (struct result **)a_; struct result **b = (struct result **)b_; return (*a)->id - (*b)->id; } static int compare_result_by_tr_trinv_id(const void *a_, const void *b_) { int d = 0; struct result **a = (struct result **)a_; struct result **b = (struct result **)b_; d = mpq_cmp((*a)->tr,(*b)->tr); if(d == 0) { d = mpq_cmp((*a)->trinv, (*b)->trinv); if(d == 0) { d = (*b)->id - (*a)->id; } } return d; } static int compare_result_by_slope(const void *a_, const void *b_) { int d = 0; struct result **a = (struct result **)a_; struct result **b = (struct result **)b_; double slopea = (*a)->x / (*a)->y; double slopeb = (*b)->x / (*b)->y; return slopea > slopeb ? -1 : slopea < slopeb ? 1 : 0; } struct timespec starttime; static void start_timer() { clock_gettime(CLOCK_MONOTONIC, &starttime); } static double runtime() { struct timespec curtime; double diff; clock_gettime(CLOCK_MONOTONIC, &curtime); return (curtime.tv_sec - starttime.tv_sec) + (curtime.tv_nsec - starttime.tv_nsec) / 1e9; } int compute_invariants(group_t *group, mat *matrices, struct result **invariants, int *n, int unique) { mpq_t tmp; mps_context *solver; mps_monomial_poly *poly; int index; int ntraces = *n, nuniq; int retval; double evs[3]; int max_slope_id; double max_slope; char buf[100]; // DEBUG("Compute traces\n"); for(int i = 0; i < ntraces; i++) { int id = invariants[i]->id; int invid = group->elements[id].inverse->id; mat_trace(invariants[i]->tr, matrices[id]); mat_trace(invariants[i]->trinv, matrices[invid]); } if(!unique) nuniq = ntraces; else { // DEBUG("Get unique traces\n"); qsort(invariants, ntraces, sizeof(struct result*), compare_result); nuniq = 0; for(int i = 0; i < ntraces; i++) { if(i == 0 || compare_result(&invariants[i], &invariants[nuniq-1]) != 0) { invariants[nuniq] = invariants[i]; invariants[nuniq]->count = 1; nuniq++; } else { invariants[nuniq-1]->count++; int oldlength = group->elements[invariants[nuniq-1]->id].length; int newlength = group->elements[invariants[i]->id].length; if(newlength < oldlength) invariants[nuniq-1]->id = invariants[i]->id; } } } DEBUG("Solve characteristic polynomials\n"); solver = mps_context_new(); poly = mps_monomial_poly_new(solver, 3); mps_context_set_output_prec(solver, 20); // relative precision mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE); max_slope = 0; for(int i = 0; i < nuniq; i++) { retval = solve_characteristic_polynomial(solver, poly, invariants[i]->tr, invariants[i]->trinv, evs); retval = 0;evs[0] = 2;evs[1] = 1;evs[2] = 0.5; // fake solving the polynomial for memory leak test if(retval == 1) { fprintf(stderr, "Error! Could not solve polynomial.\n"); continue; } else if(retval == 2) { continue; } if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); if(fabs(evs[1]) < fabs(evs[2])) SWAP(double, evs[1], evs[2]); if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); double x = log(fabs(evs[0])); double y = -log(fabs(evs[2])); invariants[i]->x = x; invariants[i]->y = y; if(y/x > max_slope + 1e-12 && (x > 0.1 || y > 0.1)) { max_slope_id = invariants[i]->id; max_slope = y/x; } else if(y/x > max_slope - 1e-12 && (x > 0.1 || y > 0.1)) { // DEBUG("%s didn't quite make it\n", // print_word(&group->elements[invariants[i]->id], buf)); } } mps_context_free(solver); qsort(invariants, nuniq, sizeof(struct result*), compare_result_by_id); *n = nuniq; return max_slope_id; } long check_memory_usage(mat *matrices, int n) { mpq_t x; long total; for(int i = 0; i < n; i++) { LOOP(j,3) LOOP(k,3) { total += mpq_numref(M(matrices[i], j, k))->_mp_size; total += mpq_denref(M(matrices[i], j, k))->_mp_size; } } return total; } int main(int argc, char *argv[]) { mpq_t s, q, t, tmp; int p1, p2, p3; int sstart, send, sdenom, qstart, qend, qdenom; mat *matrices; group_t *group; int nmax, n; int max_slope_id; char buf[100]; char buf2[100]; struct result *invariants; struct result **distinct_invariants; start_timer(); mpq_inits(s, q, t, tmp, NULL); if(argc < 11) { fprintf(stderr, "Usage: %s \n", argv[0]); exit(1); } nmax = atoi(argv[1]); p1 = atoi(argv[2]); p2 = atoi(argv[3]); p3 = atoi(argv[4]); sstart = atoi(argv[5]); send = atoi(argv[6]); sdenom = atoi(argv[7]); qstart = atoi(argv[8]); qend = atoi(argv[9]); qdenom = atoi(argv[10]); DEBUG("Allocate\n"); matrices = malloc(nmax*sizeof(mat)); for(int i = 0; i < nmax; i++) mat_init(matrices[i], 3); invariants = malloc(nmax*sizeof(struct result)); distinct_invariants = malloc(nmax*sizeof(struct result)); for(int i = 0; i < nmax; i++) { mpq_init(invariants[i].tr); mpq_init(invariants[i].trinv); } // order of the triangle reflection generators: a, b, c // order of the rotation orders: bc, ac, ab DEBUG("Generate group\n"); group = coxeter_init_triangle(p1, p2, p3, nmax); // first run; compute all matrices for(int i = 0; i < group->size; i++) group->elements[i].need_to_compute = 1; // use very generic values for the pilot run unless sstart=send and qstart=qend if(sstart == send && qstart == qend) { mpq_set_ui(s, sstart, sdenom); mpq_set_ui(q, qstart, qdenom); DEBUG("Single run for s = %d/%d, q = %d/%d\n", sstart, sdenom, qstart, qdenom); } else { mpq_set_ui(s, 4, 100); mpq_set_ui(q, 7, 100); DEBUG("Initial run for s = %d/%d, q = %d/%d\n", 4, 100, 7, 100); } DEBUG("Compute matrices\n"); enumerate(group, matrices, p1, p2, p3, s, q); // prepare array of ids n = 0; for(int i = 0; i < group->size; i++) { if(group->elements[i].length % 2 != 0 || !group->elements[i].inverse) continue; invariants[i].id = i; distinct_invariants[n++] = &invariants[i]; } DEBUG("Compute invariants\n"); max_slope_id = compute_invariants(group, matrices, distinct_invariants, &n, 1); // prepare for next time; don't need to change ids in distinct_invariants! for(int i = 0; i < group->size; i++) group->elements[i].need_to_compute = 0; group->elements[0].need_to_compute = 1; int multiplication_count = 1; for(int i = 0; i < n; i++) { groupelement_t *cur = &group->elements[distinct_invariants[i]->id]; while(cur->need_to_compute == 0) { cur->need_to_compute = 1; multiplication_count++; cur = cur->parent->parent; // also need to compute its even-length ancestors } cur = group->elements[distinct_invariants[i]->id].inverse; while(cur->need_to_compute == 0) { cur->need_to_compute = 1; multiplication_count++; cur = cur->parent->parent; } } DEBUG("Would have needed %d matrix multiplications for %d unique traces up to reflection length %d\n", multiplication_count, n, group->elements[group->size-1].length); if(sstart != send || qstart != qend) { for(int sloop = sstart; sloop <= send; sloop++) { for(int qloop = qstart; qloop <= qend; qloop++) { DEBUG("Loop for s = %d/%d, q = %d/%d\n", sloop, sdenom, qloop, qdenom); mpq_set_ui(s, sloop, sdenom); mpq_set_ui(q, qloop, qdenom); DEBUG("Compute matrices\n"); enumerate(group, matrices, p1, p2, p3, s, q); DEBUG("Compute invariants\n"); max_slope_id = compute_invariants(group, matrices, distinct_invariants, &n, 0); // output gmp_printf("%Qd %Qd %s\n", s, q, print_word(&group->elements[max_slope_id], buf)); fflush(stdout); } } } else { // output for(int i = 0; i < n; i++) { double slope = distinct_invariants[i]->y/distinct_invariants[i]->x; // exclude tr = trinv = 2/1/0/-1/3 mpq_set_si(tmp, 2, 1); if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 && mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0) continue; mpq_set_si(tmp, 1, 1); if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 && mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0) continue; mpq_set_si(tmp, 0, 1); if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 && mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0) continue; mpq_set_si(tmp, -1, 1); if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 && mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0) continue; mpq_set_si(tmp, 3, 1); if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 && mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0) continue; gmp_printf("%d %d %s %f\n", distinct_invariants[i]->id, distinct_invariants[i]->count, print_word(&group->elements[distinct_invariants[i]->id], buf), slope ); /* gmp_printf("%d %d %d %Qd %Qd %f %f %f %f %f %s\n", distinct_invariants[i]->id, distinct_invariants[i]->count, cumulative, distinct_invariants[i]->tr, distinct_invariants[i]->trinv, log(fabs(mpq_get_d(distinct_invariants[i]->tr))), log(fabs(mpq_get_d(distinct_invariants[i]->trinv))), distinct_invariants[i]->x, distinct_invariants[i]->y, slope, print_word(&group->elements[distinct_invariants[i]->id], buf) ); */ } } DEBUG("Clean up\n"); for(int i = 0; i < nmax; i++) { mpq_clear(invariants[i].tr); mpq_clear(invariants[i].trinv); } free(invariants); free(distinct_invariants); for(int i = 0; i < nmax; i++) mat_clear(matrices[i]); free(matrices); coxeter_clear(group); mpq_clears(s, q, t, tmp, NULL); }