Compare commits
4 Commits
public
...
asymmetric
Author | SHA1 | Date | |
---|---|---|---|
|
015b391cc0 | ||
|
d71b1b9507 | ||
|
ca8799702d | ||
|
35932782e9 |
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
*.o
|
||||
limit_set
|
||||
*.pdf
|
11
Makefile
11
Makefile
@ -1,4 +1,4 @@
|
||||
HEADERS=triangle.h linalg.h queue.h initcairo.h main.h
|
||||
HEADERS=triangle.h linalg.h queue.h initcairo.h main.h exp_equation.h
|
||||
|
||||
SPECIAL_OPTIONS=-O0 -g -D_DEBUG
|
||||
#SPECIAL_OPTIONS=-O3 -pg -funroll-loops -fno-inline
|
||||
@ -11,8 +11,8 @@ OPTIONS=$(GENERAL_OPTIONS) $(CAIRO_OPTIONS) $(SPECIAL_OPTIONS)
|
||||
|
||||
all: limit_set
|
||||
|
||||
limit_set: limit_set.o linalg.o triangle.o initcairo.o draw.o main.o
|
||||
gcc $(OPTIONS) -o limit_set limit_set.o linalg.o triangle.o initcairo.o draw.o main.o -lm -lgsl -lcblas -lcairo -lX11
|
||||
limit_set: limit_set.o linalg.o triangle.o initcairo.o draw.o main.o exp_equation.o
|
||||
gcc $(OPTIONS) -o limit_set limit_set.o linalg.o triangle.o initcairo.o draw.o main.o exp_equation.o -lm -lgsl -lcblas -lcairo -lX11
|
||||
|
||||
linalg.o: linalg.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c linalg.c
|
||||
@ -32,5 +32,8 @@ draw.o: draw.c $(HEADERS)
|
||||
main.o: main.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c main.c
|
||||
|
||||
exp_equation.o: exp_equation.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c exp_equation.c
|
||||
|
||||
clean:
|
||||
rm -f limit_set linalg.o triangle.o limit_set.o draw.o main.o
|
||||
rm -f limit_set linalg.o triangle.o limit_set.o draw.o main.o exp_equation.o
|
||||
|
50
README.md
50
README.md
@ -1,50 +0,0 @@
|
||||
# triangle_group_limit_set - visualizer for triangle group limit sets in the projective plane
|
||||
|
||||
This program visualizes the fractal limit set of triangle groups in SL(3,R) in the projective plane. For the mathematical details, see [our paper].
|
||||
|
||||
## Installation & Prerequisites ##
|
||||
|
||||
This program is written C and only runs on Linux with the X window system (because that's what I happen to be using). It uses [Cairo] for drawing and X11 for input. We also require the [Gnu Scientific Library (GSL)] including CBLAS.
|
||||
|
||||
To build, just make sure GCC as well as these libraries are installed, and run
|
||||
|
||||
make
|
||||
|
||||
Then we can run it for example like this:
|
||||
|
||||
./limit_set 5 5 5 1 1 1 1.0
|
||||
|
||||
The arguments are 6 integers (p1, p2, p3, q1, q2, q3) and a floating point numbers t. Together they discribe the triangle group under consideration (t can be changed with the arrow keys).
|
||||
|
||||
## Key bindings
|
||||
|
||||
Drag the mouse to move the image, drag with Shift pressed to rotate.
|
||||
|
||||
| Key | function |
|
||||
|----------|-----------------------------------------------------------------------------------------------------|
|
||||
| PageUp | increase t by 2% |
|
||||
| PageDown | decrease t by 2% |
|
||||
| Right | increase t by 0.2% |
|
||||
| Left | decreaes t by 0.2% |
|
||||
| Up | increase t by 0.002% |
|
||||
| Down | decrease t by 0.002% |
|
||||
| Space | (reset t to original value) |
|
||||
| R | cycle through affine charts |
|
||||
| l | show limit curve |
|
||||
| L | show limit curve as line or as points |
|
||||
| f | generate limit curve using attracting / repelling fixed points of conjugates of the Coxeter element |
|
||||
| d | show dual limit curve |
|
||||
| r | show fixed points and lines of generating reflections |
|
||||
| a | show fixed points and lines of Coxeter elements |
|
||||
| c | show the orbit of an arbitrary point (point can be changed with Shift+Click) |
|
||||
| b | show certain conics touching the limit curve |
|
||||
| B | show the "boxes" used to approximate the limit curve |
|
||||
| p | save a screenshot of the current image (in PDF format) |
|
||||
| t | toggle info text |
|
||||
| i | (print some info to terminal?) |
|
||||
| x | (show rotated reflectors?) |
|
||||
| M | (make a movie) |
|
||||
|
||||
[Cairo]: https://cairographics.org/
|
||||
[Gnu Scientific Library (GSL)]: https://www.gnu.org/software/gsl/
|
||||
[our paper]: https://arxiv.org/abs/2106.11349
|
578
draw.c
578
draw.c
@ -1,4 +1,5 @@
|
||||
#include "main.h"
|
||||
#include "exp_equation.h"
|
||||
|
||||
#define FMOD(x,y) (fmod(x,y) < 0 ? fmod(x,y) + y : fmod(x,y))
|
||||
#define ANGLE_DIFF(x,y) (FMOD((x)-(y), 2*M_PI))
|
||||
@ -22,6 +23,50 @@ vector_t cross(vector_t a, vector_t b)
|
||||
return result;
|
||||
}
|
||||
|
||||
double scal(vector_t a, vector_t b)
|
||||
{
|
||||
double result = 0.0;
|
||||
LOOP(i) result += a.x[i]*b.x[i];
|
||||
return result;
|
||||
}
|
||||
|
||||
// degenerate conic whose zero set is the union of two lines
|
||||
// Q = a^T b + b^T a
|
||||
void degenerate_conic(vector_t a, vector_t b, gsl_matrix *conic)
|
||||
{
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(conic, i, j, a.x[i]*b.x[j] + a.x[j]*b.x[i]);
|
||||
}
|
||||
|
||||
double conic_value(gsl_matrix *conic, vector_t v)
|
||||
{
|
||||
double result = 0.0;
|
||||
LOOP(i) LOOP(j) result += gsl_matrix_get(conic, i, j) * v.x[i] * v.x[j];
|
||||
return result;
|
||||
}
|
||||
|
||||
// finds conic in the pencil through (l1,l2) and (L1,L2) going through p
|
||||
void conic_from_lines(workspace_t *ws, vector_t l1, vector_t l2, vector_t L1, vector_t L2, vector_t p, gsl_matrix *conic)
|
||||
{
|
||||
gsl_matrix *degenerate1 = gsl_matrix_alloc(3, 3);
|
||||
gsl_matrix *degenerate2 = gsl_matrix_alloc(3, 3);
|
||||
gsl_matrix *tmp = gsl_matrix_alloc(3, 3);
|
||||
|
||||
degenerate_conic(l1, l2, degenerate1);
|
||||
degenerate_conic(L1, L2, degenerate2);
|
||||
|
||||
double t = - conic_value(degenerate1, p) / conic_value(degenerate2, p);
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(conic, i, j,
|
||||
gsl_matrix_get(degenerate1, i, j) +
|
||||
gsl_matrix_get(degenerate2, i, j)*t);
|
||||
int positives = diagonalize_symmetric_form(conic, tmp, ws);
|
||||
if(positives == 2)
|
||||
LOOP(i) LOOP(j) *gsl_matrix_ptr(conic, i, j) *= -1;
|
||||
|
||||
gsl_matrix_free(degenerate1);
|
||||
gsl_matrix_free(degenerate2);
|
||||
gsl_matrix_free(tmp);
|
||||
}
|
||||
|
||||
vector_t apply(gsl_matrix *m, vector_t x)
|
||||
{
|
||||
vector_t out;
|
||||
@ -42,6 +87,133 @@ vector_t apply_transpose(gsl_matrix *m, vector_t x)
|
||||
return out;
|
||||
}
|
||||
|
||||
vector_t apply_pseudoinverse_transpose(gsl_matrix *m, vector_t in)
|
||||
{
|
||||
vector_t out;
|
||||
double cofactor;
|
||||
|
||||
LOOP(i) out.x[i] = 0.0;
|
||||
LOOP(i) LOOP(j) {
|
||||
cofactor = gsl_matrix_get(m, (i+1)%3, (j+1)%3) * gsl_matrix_get(m, (i+2)%3, (j+2)%3)
|
||||
- gsl_matrix_get(m, (i+1)%3, (j+2)%3) * gsl_matrix_get(m, (i+2)%3, (j+1)%3);
|
||||
out.x[i] += cofactor * in.x[j];
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
vector_t apply_pseudoinverse(gsl_matrix *m, vector_t in)
|
||||
{
|
||||
vector_t out;
|
||||
double cofactor;
|
||||
|
||||
LOOP(i) out.x[i] = 0.0;
|
||||
LOOP(i) LOOP(j) {
|
||||
cofactor = gsl_matrix_get(m, (j+1)%3, (i+1)%3) * gsl_matrix_get(m, (j+2)%3, (i+2)%3)
|
||||
- gsl_matrix_get(m, (j+1)%3, (i+2)%3) * gsl_matrix_get(m, (j+2)%3, (i+1)%3);
|
||||
out.x[i] += cofactor * in.x[j];
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
int intersect_line_and_conic(DrawingContext *ctx, vector_t line, gsl_matrix *conic, vector_t *intersection1, vector_t *intersection2)
|
||||
{
|
||||
gsl_matrix *frame = getTempMatrix(ctx->ws);
|
||||
|
||||
int pos = diagonalize_symmetric_form(conic, frame, ctx->ws);
|
||||
|
||||
vector_t a = apply_pseudoinverse_transpose(frame, line);
|
||||
|
||||
double disc = a.x[0]*a.x[0] + a.x[1]*a.x[1] - a.x[2]*a.x[2];
|
||||
if(disc < 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
vector_t intersection1_in_frame;
|
||||
intersection1_in_frame.x[0] = -a.x[0]*a.x[2] + a.x[1]*sqrt(disc);
|
||||
intersection1_in_frame.x[1] = -a.x[1]*a.x[2] - a.x[0]*sqrt(disc);
|
||||
intersection1_in_frame.x[2] = a.x[0]*a.x[0] + a.x[1]*a.x[1];
|
||||
*intersection1 = apply_pseudoinverse(frame, intersection1_in_frame);
|
||||
|
||||
vector_t intersection2_in_frame;
|
||||
intersection2_in_frame.x[0] = -a.x[0]*a.x[2] - a.x[1]*sqrt(disc);
|
||||
intersection2_in_frame.x[1] = -a.x[1]*a.x[2] + a.x[0]*sqrt(disc);
|
||||
intersection2_in_frame.x[2] = a.x[0]*a.x[0] + a.x[1]*a.x[1];
|
||||
*intersection2 = apply_pseudoinverse(frame, intersection2_in_frame);
|
||||
|
||||
releaseTempMatrices(ctx->ws, 1);
|
||||
}
|
||||
|
||||
// intersect the line given by the covector "line" with the orbit of "orbit_point"
|
||||
// by the one--parameter subgroup of SL(3,R) which contains the element "loxodromic"
|
||||
// in an eigenbasis of "loxodromic", this corresponds
|
||||
int intersect_line_and_loxodromic_orbit(DrawingContext *ctx, vector_t line, gsl_matrix *frame, double *logeigenvalues, vector_t start, vector_t *out)
|
||||
{
|
||||
vector_t line_in_frame = apply_transpose(frame, line);
|
||||
vector_t start_in_frame = apply_pseudoinverse(frame, start);
|
||||
|
||||
vector_t a, x;
|
||||
LOOP(i) a.x[i] = logeigenvalues[i];
|
||||
LOOP(i) x.x[i] = line_in_frame.x[i]*start_in_frame.x[i];
|
||||
|
||||
double t[2];
|
||||
vector_t v[2];
|
||||
int n1, n2;
|
||||
|
||||
n1 = solve_linear_exp(a, x, t);
|
||||
for(int i = 0; i < n1; i++) {
|
||||
LOOP(j) v[i].x[j] = exp(a.x[j]*t[i]) * start_in_frame.x[j];
|
||||
out[i] = apply(frame, v[i]);
|
||||
}
|
||||
|
||||
x.x[1] *= -1;
|
||||
n2 = solve_linear_exp(a, x, t);
|
||||
for(int i = 0; i < n2; i++) {
|
||||
LOOP(j) v[i].x[j] = exp(a.x[j]*t[i]) * start_in_frame.x[j];
|
||||
v[i].x[1] *= -1;
|
||||
out[i+n1] = apply(frame, v[i]);
|
||||
}
|
||||
|
||||
if(n1+n2 > 2) {
|
||||
fprintf(stderr, "more than 2 solutions in intersect_line_and_loxodromic_orbit()!\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
return n1+n2;
|
||||
}
|
||||
|
||||
// should be three collinear vectors!
|
||||
double halfCR(vector_t x, vector_t y, vector_t z)
|
||||
{
|
||||
double xy = scal(x,y);
|
||||
double yz = scal(y,z);
|
||||
double zx = scal(z,x);
|
||||
double yy = scal(y,y);
|
||||
double xx = scal(x,x);
|
||||
|
||||
return fabs((yz*xy-zx*yy)/(yz*xx-zx*xy));
|
||||
}
|
||||
|
||||
void getMinMaxHalfCrossRatio(double *limit_curve, int n, vector_t v1, vector_t v2, int max, int *min_index, double* min_cr)
|
||||
{
|
||||
vector_t fp[3];
|
||||
vector_t tangent;
|
||||
double cr;
|
||||
*min_cr = max ? 0 : INFINITY;
|
||||
for(int i = 0; i < n; i++) {
|
||||
LOOP(j) LOOP(k) fp[j].x[k] = limit_curve[12*i+3+3*j+k];
|
||||
|
||||
tangent = cross(fp[0],fp[1]);
|
||||
cr = fabs(scal(v2, tangent) / scal(v1, tangent));
|
||||
if(!max && cr < *min_cr || max && cr > *min_cr) {
|
||||
*min_cr = cr;
|
||||
*min_index = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int fixedPoints(DrawingContext *ctx, const char *word, vector_t *out)
|
||||
{
|
||||
gsl_matrix *tmp = getTempMatrix(ctx->ws);
|
||||
@ -96,10 +268,20 @@ void drawPoint(DrawingContext *ctx, point_t p)
|
||||
cairo_t *C = ctx->cairo;
|
||||
|
||||
cairo_save(C);
|
||||
cairo_arc(C, p.x, p.y, 4.0/ctx->dim->scalefactor, 0, 2*M_PI);
|
||||
cairo_arc(C, p.x, p.y, 3.0/ctx->dim->scalefactor, 0, 2*M_PI);
|
||||
cairo_close_path(C);
|
||||
cairo_fill(C);
|
||||
cairo_restore(C);
|
||||
|
||||
/*
|
||||
cairo_save(C);
|
||||
cairo_move_to(C, p.x, p.y);
|
||||
cairo_close_path(C);
|
||||
cairo_set_line_cap(C, CAIRO_LINE_CAP_ROUND);
|
||||
cairo_set_line_width(C, 10.0/ctx->dim->scalefactor);
|
||||
cairo_stroke(C);
|
||||
cairo_restore(C);
|
||||
*/
|
||||
}
|
||||
|
||||
void drawSegment2d(DrawingContext *ctx, point_t a, point_t b)
|
||||
@ -183,13 +365,22 @@ void drawSegmentWith(DrawingContext *ctx, vector_t a, vector_t b, vector_t line,
|
||||
LOOP(i) x[i] = 0.0;
|
||||
LOOP(i) LOOP(j) {
|
||||
cofactor = gsl_matrix_get(ctx->cob, (i+1)%3, (j+1)%3) * gsl_matrix_get(ctx->cob, (i+2)%3, (j+2)%3)
|
||||
- gsl_matrix_get(ctx->cob, (i+1)%3, (j+2)%3) * gsl_matrix_get(ctx->cob, (i+2)%3, (j+1)%3);
|
||||
- gsl_matrix_get(ctx->cob, (i+1)%3, (j+2)%3) * gsl_matrix_get(ctx->cob, (i+2)%3, (j+1)%3);
|
||||
x[i] += cofactor * line.x[j];
|
||||
}
|
||||
|
||||
// t = parameter on segment of intersection with line, s(t) = a + (b-a)*t
|
||||
tline = -(a_.x*x[0] + a_.y*x[1] + x[2])/((b_.x - a_.x)*x[0] + (b_.y - a_.y)*x[1]);
|
||||
|
||||
/*
|
||||
printf("tline: %f\n", tline);
|
||||
|
||||
point_t s;
|
||||
s.x = a_.x - (b_.x-a_.x)*tline;
|
||||
s.y = a_.y - (b_.y-a_.y)*tline;
|
||||
drawPoint(ctx, s);
|
||||
*/
|
||||
|
||||
if((tline < 0 || tline > 1) != contains) {
|
||||
drawSegment2d(ctx, a_, b_);
|
||||
} else { // need to draw complementary segment
|
||||
@ -197,7 +388,6 @@ void drawSegmentWith(DrawingContext *ctx, vector_t a, vector_t b, vector_t line,
|
||||
m.x = ctx->dim->center_x;
|
||||
m.y = ctx->dim->center_y;
|
||||
r = ctx->dim->radius;
|
||||
|
||||
// equation is coeff2 t^2 + 2 coeff1 t + coeff0 = 0
|
||||
coeff0 = (a_.x - m.x)*(a_.x - m.x) + (a_.y - m.y)*(a_.y - m.y) - r*r;
|
||||
coeff1 = (a_.x - m.x)*(b_.x - a_.x) + (a_.y - m.y)*(b_.y - a_.y);
|
||||
@ -218,6 +408,7 @@ void drawSegmentWith(DrawingContext *ctx, vector_t a, vector_t b, vector_t line,
|
||||
}
|
||||
|
||||
// level 3: boxes and polygons
|
||||
|
||||
void drawPolygon(DrawingContext *ctx, int segments, int sides, ...)
|
||||
{
|
||||
va_list args;
|
||||
@ -279,6 +470,8 @@ void drawBoxLines(DrawingContext *ctx, const char *word1, const char *word2)
|
||||
drawPolygon(ctx, 0, 4, p[0][0], i[0], p[1][0], i[1]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void drawBoxStd(DrawingContext *ctx, const char *word, char base)
|
||||
{
|
||||
char word1[100];
|
||||
@ -346,6 +539,70 @@ void drawRotationOrbitFrame(DrawingContext *ctx, gsl_matrix *frame, vector_t sta
|
||||
releaseTempVectors(ctx->ws, 2);
|
||||
}
|
||||
|
||||
void drawLoxodromicOrbitFrame(DrawingContext *ctx, gsl_matrix *frame, double *logeigenvalues, vector_t start)
|
||||
{
|
||||
vector_t start_in_frame = apply_pseudoinverse(frame, start);
|
||||
int iterations = 500;
|
||||
double stepsize = 0.02;
|
||||
vector_t x, w;
|
||||
point_t p;
|
||||
cairo_t *C = ctx->cairo;
|
||||
double t;
|
||||
|
||||
int previous_inside = 0;
|
||||
for(int k = 0; k <= iterations; k++) {
|
||||
// 0 = repelling fixed point, iterations/2 = attracting fixed point
|
||||
if(k == 0 || k == iterations) {
|
||||
w.x[0] = 0.0; w.x[1] = 0.0; w.x[2] = 1.0;
|
||||
} else if(k == iterations/2) {
|
||||
w.x[0] = 1.0; w.x[1] = 0.0; w.x[2] = 0.0;
|
||||
} else if(k < iterations/2) {
|
||||
t = (k-(double)iterations/4.0)*stepsize;
|
||||
LOOP(i) w.x[i] = start_in_frame.x[i] * exp(logeigenvalues[i]*t);
|
||||
w.x[1] *= -1;
|
||||
} else {
|
||||
t = ((double)iterations*3.0/4.0-k)*stepsize;
|
||||
LOOP(i) w.x[i] = start_in_frame.x[i] * exp(logeigenvalues[i]*t);
|
||||
}
|
||||
|
||||
x = apply(frame, w);
|
||||
p = vectorToPoint(ctx, x);
|
||||
|
||||
if(isInsideBB(ctx, p)) {
|
||||
if(!previous_inside)
|
||||
cairo_move_to(C, p.x, p.y);
|
||||
else
|
||||
cairo_line_to(C, p.x, p.y);
|
||||
previous_inside = 1;
|
||||
} else {
|
||||
previous_inside = 0;
|
||||
}
|
||||
}
|
||||
|
||||
cairo_stroke(C);
|
||||
}
|
||||
|
||||
void drawConic(DrawingContext *ctx, gsl_matrix *form)
|
||||
{
|
||||
gsl_matrix *orthogonal_frame = getTempMatrix(ctx->ws);
|
||||
gsl_matrix *frame = getTempMatrix(ctx->ws);
|
||||
double eval[3];
|
||||
vector_t start;
|
||||
|
||||
diagonalize_symmetric_matrix(form, orthogonal_frame, eval, ctx->ws);
|
||||
|
||||
LOOP(i) LOOP(j)
|
||||
gsl_matrix_set(frame, j, i,
|
||||
gsl_matrix_get(orthogonal_frame, i, j)/sqrt(fabs(eval[i])));
|
||||
|
||||
// find any timelike vector; a simple method is adding the first and third column of frame
|
||||
LOOP(i) start.x[i] = gsl_matrix_get(frame, i, 0) + gsl_matrix_get(frame, i, 2);
|
||||
|
||||
drawRotationOrbitFrame(ctx, frame, start);
|
||||
|
||||
releaseTempMatrices(ctx->ws, 2);
|
||||
}
|
||||
|
||||
void drawRotationOrbit(DrawingContext *ctx, const char *word, vector_t start)
|
||||
{
|
||||
gsl_matrix *frame = getTempMatrix(ctx->ws);
|
||||
@ -558,8 +815,7 @@ void drawAttractors(DrawingContext *ctx)
|
||||
fixedPoints(ctx, "abc", p[0]);
|
||||
fixedPoints(ctx, "bca", p[1]);
|
||||
fixedPoints(ctx, "cab", p[2]);
|
||||
// fixedPoints(ctx, "abacacbabc", p[3]);
|
||||
// fixedPoints(ctx, "abcabcabcabcab", p[3]);
|
||||
fixedPoints(ctx, "a cab a", p[3]);
|
||||
fixedPoints(ctx, "b abc b", p[4]);
|
||||
fixedPoints(ctx, "c bca c", p[5]);
|
||||
|
||||
@ -567,14 +823,18 @@ void drawAttractors(DrawingContext *ctx)
|
||||
|
||||
for(int i = 0; i < n; i++) LOOP(j) l[i][j] = cross(p[i][(3-j)%3], p[i][(4-j)%3]);
|
||||
|
||||
for(int i = 0; i < n; i++) LOOP(j) {
|
||||
cairo_set_source_rgb(ctx->cairo, color[i][0], color[i][1], color[i][2]);
|
||||
drawVector(ctx, p[i][j]);
|
||||
for(int i = 0; i < n; i++) {
|
||||
for(int j = 0; j < 3; j += 1) {
|
||||
cairo_set_source_rgb(ctx->cairo, color[i][0], color[i][1], color[i][2]);
|
||||
drawVector(ctx, p[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
for(int i = 0; i < n; i++) LOOP(j) {
|
||||
cairo_set_source_rgb(ctx->cairo, color[i][0], color[i][1], color[i][2]);
|
||||
drawCovector(ctx, l[i][j]);
|
||||
for(int i = 0; i < n; i++) {
|
||||
for(int j = 0; j < 3; j += 1) {
|
||||
cairo_set_source_rgb(ctx->cairo, color[i][0], color[i][1], color[i][2]);
|
||||
drawCovector(ctx, l[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -633,6 +893,12 @@ void drawCurvedBox(DrawingContext *ctx, int base, const char *conj, int style)
|
||||
fixedPoints(ctx, word, p[10]);
|
||||
|
||||
|
||||
// conjugate_word("bca b abc b acb", modifier, conj, word);
|
||||
// fixedPoints(ctx, word, p[6]);
|
||||
// conjugate_word("bca baca cab acab acb", modifier, conj, word);
|
||||
// fixedPoints(ctx, word, p[7]);
|
||||
|
||||
|
||||
LOOP(j) l[0][j] = cross(p[0][(3-j)%3], p[0][(4-j)%3]);
|
||||
LOOP(j) l[1][j] = cross(p[1][(3-j)%3], p[1][(4-j)%3]);
|
||||
LOOP(j) l[10][j] = cross(p[10][(3-j)%3], p[10][(4-j)%3]);
|
||||
@ -684,6 +950,10 @@ void drawBoxes(DrawingContext *ctx)
|
||||
{
|
||||
gsl_matrix *rot = getTempMatrix(ctx->ws);
|
||||
gsl_matrix **gen = getTempMatrices(ctx->ws, 3);
|
||||
gsl_matrix *order3 = getTempMatrix(ctx->ws);
|
||||
gsl_matrix *tmp = getTempMatrix(ctx->ws);
|
||||
gsl_matrix *tmp2 = getTempMatrix(ctx->ws);
|
||||
gsl_matrix *conic = getTempMatrix(ctx->ws);
|
||||
gsl_matrix *frame = getTempMatrix(ctx->ws);
|
||||
cairo_t *C = ctx->cairo;
|
||||
cairo_save(C);
|
||||
@ -703,105 +973,236 @@ void drawBoxes(DrawingContext *ctx)
|
||||
cairo_set_line_width(C, 2.0/ctx->dim->scalefactor);
|
||||
cairo_set_source_rgb(C, 0.6, 0.6, 0.6);
|
||||
|
||||
drawRotationOrbit(ctx, "ab", p[0][0]);
|
||||
drawRotationOrbit(ctx, "bc", p[0][0]);
|
||||
drawRotationOrbit(ctx, "ca", p[0][0]);
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(tmp, i, j, p[0][j].x[i]);
|
||||
double evs[3];
|
||||
wordEigenvalues(ctx, "abc", evs);
|
||||
LOOP(i) evs[i] = log(fabs(evs[i]));
|
||||
drawLoxodromicOrbitFrame(ctx, tmp, evs, p[1][0]);
|
||||
drawLoxodromicOrbitFrame(ctx, tmp, evs, p[1][2]);
|
||||
|
||||
if(ctx->mode >= 2) {
|
||||
drawRotationOrbit(ctx, "bcabcb", p[1][0]); // bcC
|
||||
drawRotationOrbit(ctx, "abcabcba", p[0][0]); // abcC
|
||||
vector_t x;
|
||||
for(int i = 0; i < ctx->n_group_elements; i++) {
|
||||
LOOP(j) x.x[j] = ctx->limit_curve[12*i+3+j];
|
||||
x = apply_pseudoinverse(tmp, x);
|
||||
printf("%f\n",
|
||||
pow(fabs(x.x[0]), evs[1]-evs[2]) *
|
||||
pow(fabs(x.x[1]), evs[2]-evs[0]) *
|
||||
pow(fabs(x.x[2]), evs[0]-evs[1]));
|
||||
}
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0, 0);
|
||||
fixedPoints(ctx, "abababcbaba", p[3]);
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0, 1);
|
||||
fixedPoints(ctx, "bc bca cb", p[3]);
|
||||
|
||||
cairo_restore(C);
|
||||
releaseTempMatrices(ctx->ws, 5);
|
||||
releaseTempMatrices(ctx->ws, 9);
|
||||
}
|
||||
|
||||
void drawBoxes2(DrawingContext *ctx)
|
||||
{
|
||||
gsl_matrix *rot = getTempMatrix(ctx->ws);
|
||||
gsl_matrix **gen = getTempMatrices(ctx->ws, 3);
|
||||
gsl_vector *marking_globalbasis = getTempVector(ctx->ws);
|
||||
gsl_vector *marking_drawbasis = getTempVector(ctx->ws);
|
||||
gsl_matrix *tmp = getTempMatrix(ctx->ws);
|
||||
gsl_matrix *tmp2 = getTempMatrix(ctx->ws);
|
||||
gsl_matrix *conic = getTempMatrix(ctx->ws);
|
||||
cairo_t *C = ctx->cairo;
|
||||
cairo_save(C);
|
||||
initializeTriangleGenerators(gen, ctx->cartan);
|
||||
|
||||
vector_t p[4][3];
|
||||
vector_t p[3][3];
|
||||
|
||||
cairo_set_line_width(C, 1/ctx->dim->scalefactor);
|
||||
cairo_set_source_rgb(C, 0, 0, 0);
|
||||
|
||||
// find coxeter fixed points and triangle vertices
|
||||
fixedPoints(ctx, "abc", p[0]);
|
||||
fixedPoints(ctx, "bca", p[1]);
|
||||
fixedPoints(ctx, "cab", p[2]);
|
||||
|
||||
cairo_set_line_width(C, 2.5/ctx->dim->scalefactor);
|
||||
vector_t vertex[3];
|
||||
LOOP(i) vertex[i] = cross(
|
||||
cross(p[(i+1)%3][0],p[(i+1)%3][2]),
|
||||
cross(p[(i+2)%3][0],p[(i+2)%3][2]));
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0, 0);
|
||||
drawCurvedBox(ctx, 'A', "", 2);
|
||||
vector_t a,b;
|
||||
double t = ctx->distance_parameter1, s = ctx->distance_parameter2;
|
||||
|
||||
if(ctx->mode >= 3 && ctx->mode != 4) {
|
||||
cairo_set_source_rgb(C, 0, 0, 0);
|
||||
drawCurvedBox(ctx, 'B', "", 2);
|
||||
drawCurvedBox(ctx, 'C', "", 2);
|
||||
}
|
||||
vector_t phiplus, phiminus, eta;
|
||||
double dvert, param;
|
||||
|
||||
if(ctx->mode == 4 || ctx->mode == 5) {
|
||||
cairo_set_source_rgb(C, 0, 0.8, 0.5);
|
||||
drawCurvedBox(ctx, 'A', "", 2);
|
||||
drawCurvedBox(ctx, 'A', "bc", 2);
|
||||
drawCurvedBox(ctx, 'A', "bcbc", 2);
|
||||
drawCurvedBox(ctx, 'A', "bcbcbc", 2);
|
||||
drawCurvedBox(ctx, 'A', "bcbcbcbc", 2);
|
||||
drawCurvedBox(ctx, 'A', "bcbcbcbcbc", 2);
|
||||
drawCurvedBox(ctx, 'A', "bcbcbcbcbcbc", 2);
|
||||
}
|
||||
// want to choose a so that d(vertex[0],a) = t*d(vertex[0],vertex[1])
|
||||
phiplus = cross(p[2][0], p[2][1]);
|
||||
phiminus = cross(p[2][2], p[2][1]);
|
||||
dvert = log(
|
||||
(scal(phiplus, vertex[0])*scal(phiminus, vertex[1])) /
|
||||
(scal(phiplus, vertex[1])*scal(phiminus, vertex[0])));
|
||||
LOOP(i) eta.x[i] =
|
||||
scal(phiminus, vertex[0]) / scal(phiplus, vertex[0])
|
||||
* exp(t*dvert) * phiplus.x[i]
|
||||
- phiminus.x[i];
|
||||
param = 1/(1-scal(eta,vertex[0])/scal(eta,vertex[1]));
|
||||
LOOP(i) a.x[i] = param*vertex[0].x[i] + (1-param)*vertex[1].x[i];
|
||||
|
||||
if(ctx->mode == 6) {
|
||||
cairo_set_source_rgb(C, 0, 0.8, 0.5);
|
||||
drawCurvedBox(ctx, 'C', "ababab", 2);
|
||||
drawCurvedBox(ctx, 'C', "abababab", 2);
|
||||
drawCurvedBox(ctx, 'C', "ababababab", 2);
|
||||
}
|
||||
// want to choose b so that d(vertex[0],b) = s*d(vertex[0],vertex[2])
|
||||
phiplus = cross(p[1][0], p[1][1]);
|
||||
phiminus = cross(p[1][2], p[1][1]);
|
||||
dvert = log(
|
||||
(scal(phiplus, vertex[0])*scal(phiminus, vertex[2])) /
|
||||
(scal(phiplus, vertex[2])*scal(phiminus, vertex[0])));
|
||||
LOOP(i) eta.x[i] =
|
||||
scal(phiminus, vertex[0]) / scal(phiplus, vertex[0])
|
||||
* exp(s*dvert) * phiplus.x[i]
|
||||
- phiminus.x[i];
|
||||
param = 1/(1-scal(eta,vertex[0])/scal(eta,vertex[2]));
|
||||
LOOP(i) b.x[i] = param*vertex[0].x[i] + (1-param)*vertex[2].x[i];
|
||||
|
||||
if(ctx->mode >= 6) {
|
||||
cairo_set_source_rgb(C, 0, 0.8, 0.5);
|
||||
drawCurvedBox(ctx, 'C', "ab", 2);
|
||||
drawCurvedBox(ctx, 'C', "abab", 2);
|
||||
}
|
||||
// draw and output stuff
|
||||
LOOP(i) drawVector(ctx, vertex[i]);
|
||||
drawVector(ctx, a);
|
||||
drawVector(ctx, b);
|
||||
drawCovector(ctx, cross(a,b));
|
||||
drawCovector(ctx, cross(b,vertex[0]));
|
||||
drawCovector(ctx, cross(vertex[0],a));
|
||||
|
||||
if(ctx->mode >= 8) {
|
||||
cairo_set_source_rgb(C, 0, 0.8, 0.5);
|
||||
drawCurvedBox(ctx, 'C', "b", 2);
|
||||
drawCurvedBox(ctx, 'C', "bab", 2);
|
||||
}
|
||||
// find the intersections with the limit set and the asymmetric distances
|
||||
int boundary_index;
|
||||
double value;
|
||||
double perimeter1 = 0.0, perimeter2 = 0.0;
|
||||
double approx_perimeter1 = 0.0, approx_perimeter2 = 0.0;
|
||||
vector_t boundary_point;
|
||||
cairo_set_source_rgb(C, 1, 0, 0);
|
||||
|
||||
if(ctx->mode >= 9) {
|
||||
cairo_set_source_rgb(C, 0.8, 0, 0.5);
|
||||
drawCurvedBox(ctx, 'B', "abca", 2);
|
||||
drawCurvedBox(ctx, 'B', "abcaca", 2);
|
||||
drawCurvedBox(ctx, 'B', "aba", 2);
|
||||
drawCurvedBox(ctx, 'B', "abaca", 2);
|
||||
getMinMaxHalfCrossRatio(ctx->limit_curve, ctx->n_group_elements,
|
||||
a, b, 1, &boundary_index, &value);
|
||||
LOOP(k) boundary_point.x[k] = ctx->limit_curve[12*boundary_index+3+k];
|
||||
drawVector(ctx, boundary_point);
|
||||
perimeter1 += log(value);
|
||||
|
||||
drawCurvedBox(ctx, 'B', "ababca", 2);
|
||||
drawCurvedBox(ctx, 'B', "ababcaca", 2);
|
||||
drawCurvedBox(ctx, 'B', "ababa", 2);
|
||||
drawCurvedBox(ctx, 'B', "ababaca", 2);
|
||||
getMinMaxHalfCrossRatio(ctx->limit_curve, ctx->n_group_elements,
|
||||
b, vertex[0], 1, &boundary_index, &value);
|
||||
LOOP(k) boundary_point.x[k] = ctx->limit_curve[12*boundary_index+3+k];
|
||||
drawVector(ctx, boundary_point);
|
||||
perimeter1 += log(value);
|
||||
approx_perimeter1 += log(value);
|
||||
|
||||
drawCurvedBox(ctx, 'B', "bca", 2);
|
||||
drawCurvedBox(ctx, 'B', "bcaca", 2);
|
||||
drawCurvedBox(ctx, 'B', "ba", 2);
|
||||
drawCurvedBox(ctx, 'B', "baca", 2);
|
||||
getMinMaxHalfCrossRatio(ctx->limit_curve, ctx->n_group_elements,
|
||||
vertex[0], a, 1, &boundary_index, &value);
|
||||
LOOP(k) boundary_point.x[k] = ctx->limit_curve[12*boundary_index+3+k];
|
||||
drawVector(ctx, boundary_point);
|
||||
perimeter1 += log(value);
|
||||
approx_perimeter1 += log(value);
|
||||
|
||||
drawCurvedBox(ctx, 'B', "babca", 2);
|
||||
drawCurvedBox(ctx, 'B', "babcaca", 2);
|
||||
drawCurvedBox(ctx, 'B', "baba", 2);
|
||||
drawCurvedBox(ctx, 'B', "babaca", 2);
|
||||
cairo_set_source_rgb(C, 0, 0, 1);
|
||||
|
||||
cairo_restore(C);
|
||||
releaseTempMatrices(ctx->ws, 4);
|
||||
}
|
||||
getMinMaxHalfCrossRatio(ctx->limit_curve, ctx->n_group_elements,
|
||||
b, a, 1, &boundary_index, &value);
|
||||
LOOP(k) boundary_point.x[k] = ctx->limit_curve[12*boundary_index+3+k];
|
||||
drawVector(ctx, boundary_point);
|
||||
perimeter2 += log(value);
|
||||
|
||||
getMinMaxHalfCrossRatio(ctx->limit_curve, ctx->n_group_elements,
|
||||
vertex[0], b, 1, &boundary_index, &value);
|
||||
LOOP(k) boundary_point.x[k] = ctx->limit_curve[12*boundary_index+3+k];
|
||||
drawVector(ctx, boundary_point);
|
||||
perimeter2 += log(value);
|
||||
approx_perimeter2 += log(value);
|
||||
|
||||
getMinMaxHalfCrossRatio(ctx->limit_curve, ctx->n_group_elements,
|
||||
a, vertex[0], 1, &boundary_index, &value);
|
||||
LOOP(k) boundary_point.x[k] = ctx->limit_curve[12*boundary_index+3+k];
|
||||
drawVector(ctx, boundary_point);
|
||||
perimeter2 += log(value);
|
||||
approx_perimeter2 += log(value);
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0.6, 0.1);
|
||||
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(tmp, i, j, p[0][j].x[i]);
|
||||
double evs[3];
|
||||
wordEigenvalues(ctx, "abc", evs);
|
||||
LOOP(i) evs[i] = log(fabs(evs[i]));
|
||||
drawLoxodromicOrbitFrame(ctx, tmp, evs, p[1][0]);
|
||||
drawLoxodromicOrbitFrame(ctx, tmp, evs, p[1][2]);
|
||||
|
||||
vector_t intersection[2];
|
||||
double hC0, hC1;
|
||||
|
||||
cairo_set_source_rgb(C, 1, 0, 0);
|
||||
intersect_line_and_loxodromic_orbit(ctx, cross(a,b), tmp, evs, p[1][2], intersection);
|
||||
hC0 = halfCR(a, b, intersection[0]);
|
||||
hC1 = halfCR(a, b, intersection[1]);
|
||||
if(hC0 > hC1)
|
||||
drawVector(ctx, intersection[0]);
|
||||
else
|
||||
drawVector(ctx, intersection[1]);
|
||||
approx_perimeter1 += log(hC0 > hC1 ? hC0 : hC1);
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0, 1);
|
||||
intersect_line_and_loxodromic_orbit(ctx, cross(a,b), tmp, evs, p[1][0], intersection);
|
||||
hC0 = halfCR(b, a, intersection[0]);
|
||||
hC1 = halfCR(b, a, intersection[1]);
|
||||
if(hC0 > hC1)
|
||||
drawVector(ctx, intersection[0]);
|
||||
else
|
||||
drawVector(ctx, intersection[1]);
|
||||
approx_perimeter2 += log(hC0 > hC1 ? hC0 : hC1);
|
||||
|
||||
/*
|
||||
vector_t conic_intersection[2];
|
||||
double hC0, hC1;
|
||||
|
||||
// find the outer conic
|
||||
cairo_set_source_rgb(C, 0, 0.7, 0);
|
||||
|
||||
conic_from_lines(ctx->ws,
|
||||
cross(p[0][0], p[0][1]), cross(p[1][0], p[1][1]),
|
||||
cross(p[0][0], p[1][0]), cross(p[0][0], p[1][0]),
|
||||
p[2][0], conic);
|
||||
drawConic(ctx, conic);
|
||||
|
||||
conic_intersection[2];
|
||||
intersect_line_and_conic(ctx, cross(a, b), conic,
|
||||
&conic_intersection[0], &conic_intersection[1]);
|
||||
|
||||
hC0 = halfCR(b, a, conic_intersection[0]);
|
||||
hC1 = halfCR(b, a, conic_intersection[1]);
|
||||
if(hC0 > hC1)
|
||||
drawVector(ctx, conic_intersection[0]);
|
||||
else
|
||||
drawVector(ctx, conic_intersection[1]);
|
||||
approx_perimeter2 += log(hC0 > hC1 ? hC0 : hC1);
|
||||
|
||||
// find the inner conic
|
||||
cairo_set_source_rgb(C, 0, 0.5, 0.5);
|
||||
|
||||
conic_from_lines(ctx->ws,
|
||||
cross(p[0][2], p[0][1]), cross(p[1][2], p[1][1]),
|
||||
cross(p[0][2], p[1][2]), cross(p[0][2], p[1][2]),
|
||||
p[2][2], conic);
|
||||
drawConic(ctx, conic);
|
||||
|
||||
conic_intersection[2];
|
||||
intersect_line_and_conic(ctx, cross(a, b), conic,
|
||||
&conic_intersection[0], &conic_intersection[1]);
|
||||
|
||||
hC0 = halfCR(a, b, conic_intersection[0]);
|
||||
hC1 = halfCR(a, b, conic_intersection[1]);
|
||||
if(hC0 > hC1)
|
||||
drawVector(ctx, conic_intersection[0]);
|
||||
else
|
||||
drawVector(ctx, conic_intersection[1]);
|
||||
approx_perimeter1 += log(hC0 > hC1 ? hC0 : hC1);
|
||||
|
||||
// output
|
||||
snprintf(ctx->extra_text, 1000, "perimeter1 = %f (%f), perimeter2 = %f (%f)",
|
||||
perimeter1, approx_perimeter1,
|
||||
perimeter2, approx_perimeter2);
|
||||
*/
|
||||
|
||||
printf("%f %f %f %f %f %f\n",
|
||||
t, s, perimeter1, perimeter2, approx_perimeter1, approx_perimeter2);
|
||||
|
||||
|
||||
cairo_restore(C);
|
||||
releaseTempMatrices(ctx->ws, 7);
|
||||
releaseTempVectors(ctx->ws, 2);
|
||||
}
|
||||
|
||||
void drawRotatedReflectors(DrawingContext *ctx)
|
||||
@ -939,8 +1340,8 @@ void drawLimitCurve(DrawingContext *ctx)
|
||||
|
||||
for(int i = 0; i < ctx->limit_curve_count; i++) {
|
||||
point_t p;
|
||||
p.x = ctx->limit_curve[3*i];
|
||||
p.y = ctx->limit_curve[3*i+1];
|
||||
p.x = ctx->limit_curve[12*i];
|
||||
p.y = ctx->limit_curve[12*i+1];
|
||||
|
||||
if(isInsideBB(ctx, p)) {
|
||||
if(!previous_inside)
|
||||
@ -957,8 +1358,8 @@ void drawLimitCurve(DrawingContext *ctx)
|
||||
} else {
|
||||
for(int i = 0; i < ctx->limit_curve_count; i++) {
|
||||
point_t p;
|
||||
p.x = ctx->limit_curve[3*i];
|
||||
p.y = ctx->limit_curve[3*i+1];
|
||||
p.x = ctx->limit_curve[12*i];
|
||||
p.y = ctx->limit_curve[12*i+1];
|
||||
|
||||
if(isInsideBB(ctx, p)) {
|
||||
cairo_arc(C, p.x, p.y, 2.0/ctx->dim->scalefactor, 0, 2*M_PI);
|
||||
@ -1064,8 +1465,8 @@ void drawText(DrawingContext *ctx)
|
||||
{
|
||||
cairo_move_to(ctx->cairo, 15, 30);
|
||||
cairo_set_source_rgb(ctx->cairo, 0, 0, 0);
|
||||
char buf[100];
|
||||
sprintf(buf, "t = exp(%.8f) = %.8f, marking = (%.5f, %.5f)", log(ctx->parameter), ctx->parameter, ctx->marking.x, ctx->marking.y);
|
||||
char buf[1000];
|
||||
snprintf(buf, 1000, "t = exp(%.8f) = %.8f, %s", log(ctx->parameter), ctx->parameter, ctx->extra_text);
|
||||
cairo_show_text(ctx->cairo, buf);
|
||||
}
|
||||
|
||||
@ -1111,6 +1512,9 @@ void draw(DrawingContext *ctx)
|
||||
if(ctx->show_marking)
|
||||
{
|
||||
cairo_set_source_rgb(C, 0, 0, 1);
|
||||
// drawPoint(ctx, ctx->marking);
|
||||
// drawPoint(ctx, ctx->marking2);
|
||||
// drawPoint(ctx, ctx->marking3);
|
||||
}
|
||||
|
||||
if(ctx->show_coxeter_orbit)
|
||||
@ -1120,7 +1524,7 @@ void draw(DrawingContext *ctx)
|
||||
cairo_identity_matrix(C); // text is in screen coordinates
|
||||
|
||||
if(ctx->show_text)
|
||||
drawText(ctx);
|
||||
drawText(ctx);
|
||||
|
||||
cairo_surface_flush(cairo_get_target(C));
|
||||
}
|
||||
|
183
exp_equation.c
Normal file
183
exp_equation.c
Normal file
@ -0,0 +1,183 @@
|
||||
#include "main.h"
|
||||
#include "exp_equation.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <gsl/gsl_errno.h>
|
||||
#include <gsl/gsl_math.h>
|
||||
#include <gsl/gsl_roots.h>
|
||||
|
||||
#define EPSILON 1e-9
|
||||
#define LOOP(i) for(int i = 0; i < 3; i++)
|
||||
|
||||
struct solve_exp_plus_exp_params
|
||||
{
|
||||
double alpha;
|
||||
double beta;
|
||||
double x;
|
||||
};
|
||||
|
||||
static double solve_exp_plus_exp_f(double t, void *_params)
|
||||
{
|
||||
struct solve_exp_plus_exp_params *params = (struct solve_exp_plus_exp_params*)_params;
|
||||
|
||||
// return exp(params->alpha * t) + exp(params->beta * t) - params->x;
|
||||
return log(exp(params->alpha * t) + exp(params->beta * t)) - log(params->x);
|
||||
}
|
||||
|
||||
static double solve_exp_plus_exp_df(double t, void *_params)
|
||||
{
|
||||
struct solve_exp_plus_exp_params *params = (struct solve_exp_plus_exp_params*)_params;
|
||||
|
||||
// return params->alpha * exp(params->alpha * t) + params->beta * exp(params->beta * t);
|
||||
return params->alpha + (params->beta - params->alpha) / (1 + exp((params->alpha-params->beta)*t));
|
||||
}
|
||||
|
||||
static void solve_exp_plus_exp_fdf(double t, void *params, double *f, double *df)
|
||||
{
|
||||
*f = solve_exp_plus_exp_f(t, params);
|
||||
*df = solve_exp_plus_exp_df(t, params);
|
||||
}
|
||||
|
||||
// solve the equation exp(alpha t) + exp(beta t) = x for t
|
||||
int solve_exp_plus_exp(double alpha, double beta, double x, double *t)
|
||||
{
|
||||
if(alpha <= 0 && beta >= 0 || alpha >= 0 && beta <= 0) {
|
||||
double critical =
|
||||
pow(-beta/alpha, alpha/(alpha-beta)) +
|
||||
pow(-beta/alpha, beta/(alpha-beta));
|
||||
|
||||
if(x < critical)
|
||||
return 0;
|
||||
else if (x < critical + EPSILON) {
|
||||
t[0] = log(-beta/alpha)/(alpha-beta);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Newton this
|
||||
gsl_root_fdfsolver *solver = gsl_root_fdfsolver_alloc(gsl_root_fdfsolver_newton);
|
||||
struct solve_exp_plus_exp_params params;
|
||||
params.alpha = alpha;
|
||||
params.beta = beta;
|
||||
params.x = x;
|
||||
gsl_function_fdf FDF;
|
||||
FDF.f = &solve_exp_plus_exp_f;
|
||||
FDF.df = &solve_exp_plus_exp_df;
|
||||
FDF.fdf = &solve_exp_plus_exp_fdf;
|
||||
FDF.params = (void *)¶ms;
|
||||
int status;
|
||||
double root, lastroot;
|
||||
|
||||
for(int r = 0; r < 2; r++) {
|
||||
root = r == 0 ? log(x)/beta : log(x)/alpha;
|
||||
gsl_root_fdfsolver_set(solver, &FDF, root);
|
||||
for(int i = 0; i < 100; i++) {
|
||||
gsl_root_fdfsolver_iterate(solver);
|
||||
lastroot = root;
|
||||
root = gsl_root_fdfsolver_root(solver);
|
||||
status = gsl_root_test_delta(root, lastroot, 0, 1e-9);
|
||||
|
||||
if(status == GSL_SUCCESS)
|
||||
break;
|
||||
|
||||
// printf("iteration %d, root %f\n", i, root);
|
||||
}
|
||||
t[r] = root;
|
||||
}
|
||||
|
||||
gsl_root_fdfsolver_free(solver);
|
||||
|
||||
return 2;
|
||||
} else {
|
||||
// Newton with start value 0
|
||||
gsl_root_fdfsolver *solver = gsl_root_fdfsolver_alloc(gsl_root_fdfsolver_newton);
|
||||
struct solve_exp_plus_exp_params params;
|
||||
params.alpha = alpha;
|
||||
params.beta = beta;
|
||||
params.x = x;
|
||||
gsl_function_fdf FDF;
|
||||
FDF.f = &solve_exp_plus_exp_f;
|
||||
FDF.df = &solve_exp_plus_exp_df;
|
||||
FDF.fdf = &solve_exp_plus_exp_fdf;
|
||||
FDF.params = (void *)¶ms;
|
||||
int status;
|
||||
double root, lastroot;
|
||||
|
||||
root = 0;
|
||||
gsl_root_fdfsolver_set(solver, &FDF, root);
|
||||
for(int i = 0; i < 100; i++) {
|
||||
gsl_root_fdfsolver_iterate(solver);
|
||||
lastroot = root;
|
||||
root = gsl_root_fdfsolver_root(solver);
|
||||
status = gsl_root_test_delta(root, lastroot, 0, 1e-9);
|
||||
|
||||
// printf("iteration %d, root %f\n", i, root);
|
||||
|
||||
if(status == GSL_SUCCESS)
|
||||
break;
|
||||
}
|
||||
t[0] = root;
|
||||
|
||||
gsl_root_fdfsolver_free(solver);
|
||||
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// solve the equation x1 exp(a1 t) + x2 exp(a2 t) + x3 exp(a3 t) = 0
|
||||
int solve_linear_exp(vector_t a, vector_t x, double *t)
|
||||
{
|
||||
if(x.x[0] > 0 && x.x[1] > 0 && x.x[2] > 0 ||
|
||||
x.x[0] < 0 && x.x[1] < 0 && x.x[2] < 0)
|
||||
return 0;
|
||||
|
||||
// ensure that y[0] < 0 and y[1], y[2] > 0
|
||||
int j;
|
||||
vector_t y, b;
|
||||
for(j = 0; j < 3; j++)
|
||||
if(x.x[(j+1)%3] * x.x[(j+2)%3] > 0)
|
||||
break;
|
||||
LOOP(i) y.x[i] = x.x[(i+j)%3];
|
||||
if(y.x[0] > 0)
|
||||
LOOP(i) y.x[i] *= -1;
|
||||
LOOP(i) b.x[i] = a.x[(i+j)%3];
|
||||
|
||||
double T = (log(y.x[1]) - log(y.x[2])) / (b.x[2] - b.x[1]);
|
||||
double rhs = - y.x[0] *
|
||||
pow(y.x[1], (b.x[0]-b.x[2])/(b.x[2]-b.x[1])) *
|
||||
pow(y.x[2], (b.x[0]-b.x[1])/(b.x[1]-b.x[2]));
|
||||
|
||||
int n = solve_exp_plus_exp(b.x[1] - b.x[0], b.x[2] - b.x[0], rhs, t);
|
||||
|
||||
for(int i = 0; i < n; i++)
|
||||
t[i] += T;
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
/*
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
// int n = solve_exp_plus_exp(atof(argv[1]), atof(argv[2]), atof(argv[3]), result);
|
||||
|
||||
double result[2];
|
||||
vector_t a, x;
|
||||
a.x[0] = atof(argv[1]);
|
||||
a.x[1] = atof(argv[2]);
|
||||
a.x[2] = atof(argv[3]);
|
||||
x.x[0] = atof(argv[4]);
|
||||
x.x[1] = atof(argv[5]);
|
||||
x.x[2] = atof(argv[6]);
|
||||
int n = solve_linear_exp(a, x, result);
|
||||
|
||||
if(n == 0)
|
||||
printf("0 results found\n");
|
||||
else if(n == 1)
|
||||
printf("1 result found: %.9f\n", result[0]);
|
||||
else if(n == 2)
|
||||
printf("2 results found: %.9f and %.9f\n", result[0], result[1]);
|
||||
else
|
||||
printf("%d results found\n", n);
|
||||
return 0;
|
||||
}
|
||||
*/
|
14
exp_equation.h
Normal file
14
exp_equation.h
Normal file
@ -0,0 +1,14 @@
|
||||
#ifndef EXP_EQUATION_H
|
||||
#define EXP_EQUATION_H
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <gsl/gsl_errno.h>
|
||||
#include <gsl/gsl_math.h>
|
||||
#include <gsl/gsl_roots.h>
|
||||
|
||||
int solve_exp_plus_exp(double alpha, double beta, double x, double *t);
|
||||
int solve_linear_exp(vector_t a, vector_t x, double *t);
|
||||
|
||||
#endif
|
11
limit_set.c
11
limit_set.c
@ -63,7 +63,7 @@ int computeLimitCurve(DrawingContext *ctx)
|
||||
|
||||
for(int i = 0; i < ctx->n_group_elements; i++) {
|
||||
multiply_many(ws, fixedpoints_pos, 3, cob_pos, elements[i], coxeter_fixedpoints_pos);
|
||||
ctx->limit_curve[3*i+2] = atan2(
|
||||
ctx->limit_curve[12*i+2] = atan2(
|
||||
gsl_matrix_get(fixedpoints_pos, 2, column)/gsl_matrix_get(fixedpoints_pos, 0, column),
|
||||
gsl_matrix_get(fixedpoints_pos, 1, column)/gsl_matrix_get(fixedpoints_pos, 0, column));
|
||||
}
|
||||
@ -85,8 +85,8 @@ int computeLimitCurve(DrawingContext *ctx)
|
||||
for(int i = 0; i < ctx->n_group_elements; i++) {
|
||||
multiply_many(ws, fixedpoints, 3, ctx->cob, elements[i], coxeter_fixedpoints);
|
||||
|
||||
x = ctx->limit_curve[3*i ] = gsl_matrix_get(fixedpoints, 0, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
y = ctx->limit_curve[3*i+1] = gsl_matrix_get(fixedpoints, 1, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
x = ctx->limit_curve[12*i ] = gsl_matrix_get(fixedpoints, 0, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
y = ctx->limit_curve[12*i+1] = gsl_matrix_get(fixedpoints, 1, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
|
||||
if((x - ctx->marking.x)*(x - ctx->marking.x) + (y - ctx->marking.y)*(y - ctx->marking.y) < 25e-10)
|
||||
{
|
||||
@ -96,11 +96,14 @@ int computeLimitCurve(DrawingContext *ctx)
|
||||
fputc('\n',stdout);
|
||||
}
|
||||
|
||||
multiply_many(ws, fixedpoints, 2, elements[i], coxeter_fixedpoints);
|
||||
LOOP(j) LOOP(k) ctx->limit_curve[12*i+3+3*j+k] = gsl_matrix_get(fixedpoints, k, j);
|
||||
|
||||
// bca abc acb = abc
|
||||
|
||||
}
|
||||
|
||||
qsort(ctx->limit_curve, ctx->n_group_elements, 3*sizeof(double), compareAngle);
|
||||
qsort(ctx->limit_curve, ctx->n_group_elements, 12*sizeof(double), compareAngle);
|
||||
|
||||
ctx->limit_curve_count = ctx->n_group_elements;
|
||||
|
||||
|
27
linalg.c
27
linalg.c
@ -315,7 +315,6 @@ int diagonalize_symmetric_form(gsl_matrix *A, gsl_matrix *cob, workspace_t *ws)
|
||||
ERROR(r, "gsl_eigen_symmv failed!\n");
|
||||
|
||||
gsl_eigen_symmv_sort(ws->eval_real, cob, GSL_EIGEN_SORT_VAL_ASC);
|
||||
|
||||
gsl_matrix_transpose(cob);
|
||||
|
||||
int positive = 0;
|
||||
@ -332,6 +331,32 @@ int diagonalize_symmetric_form(gsl_matrix *A, gsl_matrix *cob, workspace_t *ws)
|
||||
return positive;
|
||||
}
|
||||
|
||||
int diagonalize_symmetric_matrix(gsl_matrix *A, gsl_matrix *cob, double *eval, workspace_t *ws)
|
||||
{
|
||||
gsl_matrix *A_ = getTempMatrix(ws);
|
||||
|
||||
gsl_matrix_memcpy(A_, A);
|
||||
int r = gsl_eigen_symmv (A_, ws->eval_real, cob, ws->work_symmv);
|
||||
ERROR(r, "gsl_eigen_symmv failed!\n");
|
||||
|
||||
gsl_eigen_symmv_sort(ws->eval_real, cob, GSL_EIGEN_SORT_VAL_ASC);
|
||||
|
||||
gsl_matrix_transpose(cob);
|
||||
|
||||
int positive = 0;
|
||||
|
||||
for(int i = 0; i < ws->n; i++) {
|
||||
if(eval)
|
||||
eval[i] = gsl_vector_get(ws->eval_real, i);
|
||||
|
||||
if(gsl_vector_get(ws->eval_real, i) > 0)
|
||||
positive++;
|
||||
}
|
||||
|
||||
releaseTempMatrices(ws, 1);
|
||||
return positive;
|
||||
}
|
||||
|
||||
// computes a matrix in SL(3, R) which projectively transforms (e1, e2, e3, e1+e2+e3) to the 4 given vectors
|
||||
void projective_frame(gsl_vector **vertices, gsl_matrix *result, workspace_t *ws)
|
||||
{
|
||||
|
3
linalg.h
3
linalg.h
@ -13,7 +13,7 @@
|
||||
#define ERROR(condition, msg, ...) if(condition){fprintf(stderr, msg, ##__VA_ARGS__); exit(1);}
|
||||
#define FCMP(x, y) gsl_fcmp(x, y, 1e-10)
|
||||
|
||||
#define MAX_TEMP_MATRICES 1200000
|
||||
#define MAX_TEMP_MATRICES 600000
|
||||
#define MAX_TEMP_VECTORS 100
|
||||
|
||||
typedef struct _workspace {
|
||||
@ -53,6 +53,7 @@ int real_eigenvectors(gsl_matrix *g, gsl_matrix *evec, workspace_t *ws);
|
||||
int real_eigenvalues(gsl_matrix *g, gsl_vector *evec, workspace_t *ws);
|
||||
void eigenvectors_symm(gsl_matrix *g, gsl_vector *eval, gsl_matrix *evec, workspace_t *ws);
|
||||
int diagonalize_symmetric_form(gsl_matrix *A, gsl_matrix *cob, workspace_t *ws);
|
||||
int diagonalize_symmetric_matrix(gsl_matrix *A, gsl_matrix *cob, double *eval, workspace_t *ws);
|
||||
void projective_frame(gsl_vector **vertices, gsl_matrix *result, workspace_t *ws);
|
||||
void rotation_frame(gsl_matrix *rotation, gsl_matrix *result, workspace_t *ws);
|
||||
|
||||
|
65
main.c
65
main.c
@ -45,9 +45,17 @@ void setupContext(DrawingContext *ctx, int argc, char *argv[])
|
||||
ctx->show_marking = 1;
|
||||
ctx->marking.x = -0.73679;
|
||||
ctx->marking.y = -0.01873;
|
||||
ctx->marking2.x = -0.73679;
|
||||
ctx->marking2.y = -0.11873;
|
||||
ctx->marking3.x = -0.73679;
|
||||
ctx->marking3.y = -0.21873;
|
||||
ctx->distance_parameter1 = 0.45;
|
||||
ctx->distance_parameter2 = 0.2;
|
||||
ctx->show_coxeter_orbit = 0;
|
||||
ctx->extra_text = malloc(1000*sizeof(char));
|
||||
memset(ctx->extra_text, 0, 1000*sizeof(char));
|
||||
|
||||
ctx->limit_curve = malloc(3*ctx->n_group_elements*sizeof(double));
|
||||
ctx->limit_curve = malloc(12*ctx->n_group_elements*sizeof(double));
|
||||
ctx->limit_curve_count = -1;
|
||||
|
||||
ctx->group = malloc(ctx->n_group_elements*sizeof(groupelement_t));
|
||||
@ -63,6 +71,7 @@ void destroyContext(DrawingContext *ctx)
|
||||
{
|
||||
free(ctx->limit_curve);
|
||||
free(ctx->group);
|
||||
free(ctx->extra_text);
|
||||
|
||||
gsl_matrix_free(ctx->cartan);
|
||||
gsl_matrix_free(ctx->cob);
|
||||
@ -70,17 +79,15 @@ void destroyContext(DrawingContext *ctx)
|
||||
workspace_free(ctx->ws);
|
||||
}
|
||||
|
||||
void computeRotationMatrix(DrawingContext *ctx, gsl_matrix *result, const char *type)
|
||||
void computeRotationMatrix(DrawingContext *ctx, gsl_matrix *result, const char *word)
|
||||
{
|
||||
gsl_matrix *tmp = getTempMatrix(ctx->ws);
|
||||
gsl_matrix **gen = getTempMatrices(ctx->ws, 3);
|
||||
|
||||
// ERROR(strlen(type) != 2, "Invalid call of computeRotationMatrix()\n");
|
||||
|
||||
initializeTriangleGenerators(gen, ctx->cartan);
|
||||
gsl_matrix_set_identity(tmp);
|
||||
for(int i = 0; i < strlen(type); i++)
|
||||
multiply_right(tmp, gen[type[i]-'a'], ctx->ws);
|
||||
for(int i = 0; i < strlen(word); i++)
|
||||
multiply_right(tmp, gen[word[i]-'a'], ctx->ws);
|
||||
|
||||
rotation_frame(tmp, result, ctx->ws);
|
||||
|
||||
@ -230,7 +237,7 @@ int processEvent(GraphicsInfo *info, XEvent *ev)
|
||||
case ButtonPress:
|
||||
state = ev->xbutton.state & (ShiftMask | LockMask | ControlMask);
|
||||
|
||||
if(ev->xbutton.button == 1 && state & ShiftMask) {
|
||||
if(ev->xbutton.button == 1 && state & ShiftMask && state & ControlMask) {
|
||||
screen_context->marking.x = (double)ev->xbutton.x;
|
||||
screen_context->marking.y = (double)ev->xbutton.y;
|
||||
printf("mouse button pressed: %f, %f\n", screen_context->marking.x, screen_context->marking.y);
|
||||
@ -238,13 +245,30 @@ int processEvent(GraphicsInfo *info, XEvent *ev)
|
||||
cairo_device_to_user(screen_context->cairo, &screen_context->marking.x, &screen_context->marking.y);
|
||||
printf("mouse button pressed transformed: %f, %f\n", screen_context->marking.x, screen_context->marking.y);
|
||||
return STATUS_REDRAW;
|
||||
} else if(ev->xbutton.button == 1 && state & ControlMask) {
|
||||
screen_context->marking2.x = (double)ev->xbutton.x;
|
||||
screen_context->marking2.y = (double)ev->xbutton.y;
|
||||
printf("mouse button pressed: %f, %f\n", screen_context->marking2.x, screen_context->marking2.y);
|
||||
cairo_set_matrix(screen_context->cairo, &screen_context->dim->matrix);
|
||||
cairo_device_to_user(screen_context->cairo, &screen_context->marking2.x, &screen_context->marking2.y);
|
||||
printf("mouse button pressed transformed: %f, %f\n", screen_context->marking2.x, screen_context->marking2.y);
|
||||
return STATUS_REDRAW;
|
||||
} else if(ev->xbutton.button == 1 && state & ShiftMask) {
|
||||
screen_context->marking3.x = (double)ev->xbutton.x;
|
||||
screen_context->marking3.y = (double)ev->xbutton.y;
|
||||
printf("mouse button pressed: %f, %f\n", screen_context->marking3.x, screen_context->marking3.y);
|
||||
cairo_set_matrix(screen_context->cairo, &screen_context->dim->matrix);
|
||||
cairo_device_to_user(screen_context->cairo, &screen_context->marking3.x, &screen_context->marking3.y);
|
||||
printf("mouse button pressed transformed: %f, %f\n", screen_context->marking3.x, screen_context->marking3.y);
|
||||
return STATUS_REDRAW;
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case KeyPress:
|
||||
state = ev->xkey.state & (ShiftMask | LockMask | ControlMask);
|
||||
key = XkbKeycodeToKeysym(ev->xkey.display, ev->xkey.keycode, 0, !!(state & ShiftMask));
|
||||
printf("Key pressed: %ld\n", key);
|
||||
// printf("Key pressed: %ld\n", key);
|
||||
|
||||
switch(key) {
|
||||
case XK_Down:
|
||||
@ -331,6 +355,16 @@ int processEvent(GraphicsInfo *info, XEvent *ev)
|
||||
case 'p':
|
||||
print(screen_context);
|
||||
break;
|
||||
case 'P':
|
||||
for(int i = 0; i <= 100; i++) {
|
||||
for(int j = 0; j <= 100; j++) {
|
||||
screen_context->distance_parameter1 = 0.02*i;
|
||||
screen_context->distance_parameter2 = 0.02*j;
|
||||
draw(screen_context);
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
break;
|
||||
case 'M':
|
||||
/*
|
||||
screen_context->limit_with_lines = 0;
|
||||
@ -350,7 +384,6 @@ int processEvent(GraphicsInfo *info, XEvent *ev)
|
||||
printf("Finished drawing %s\n", filename);
|
||||
}
|
||||
*/
|
||||
/*
|
||||
screen_context->limit_with_lines = 0;
|
||||
double parameter_start = screen_context->parameter;
|
||||
for(int i = 0; i <= 1300; i++) {
|
||||
@ -367,17 +400,7 @@ int processEvent(GraphicsInfo *info, XEvent *ev)
|
||||
cairo_surface_write_to_png(info->buffer_surface, filename);
|
||||
printf("Finished drawing %s\n", filename);
|
||||
}
|
||||
*/
|
||||
screen_context->limit_with_lines = 0;
|
||||
for(int i = 0; i <= 1000; i++) {
|
||||
screen_context->parameter = exp(log(3.0)*((double)i/500-1));
|
||||
updateMatrices(screen_context);
|
||||
computeLimitCurve(screen_context);
|
||||
draw(screen_context);
|
||||
sprintf(filename, "output/movie8/test%04d.png", i);
|
||||
// cairo_surface_write_to_png(info->buffer_surface, filename);
|
||||
printf("Finished drawing %s\n", filename);
|
||||
}
|
||||
|
||||
case 'f':
|
||||
TOGGLE(screen_context->use_repelling);
|
||||
computeLimitCurve(screen_context);
|
||||
@ -455,7 +478,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
gettimeofday(¤t_time, 0);
|
||||
end_time = current_time.tv_sec + current_time.tv_usec*1e-6;
|
||||
printf("drawing finished in %.2f milliseconds, of which %.2f milliseconds were buffer switching\n", (end_time - start_time) * 1000, (end_time - intermediate_time) * 1000);
|
||||
// printf("drawing finished in %.2f milliseconds, of which %.2f milliseconds were buffer switching\n", (end_time - start_time) * 1000, (end_time - intermediate_time) * 1000);
|
||||
}
|
||||
waitUpdateTimer(info);
|
||||
}
|
||||
|
15
main.h
15
main.h
@ -11,7 +11,7 @@
|
||||
#define ERROR(condition, msg, ...) if(condition){fprintf(stderr, msg, ##__VA_ARGS__); exit(1);}
|
||||
#define LOOP(i) for(int i = 0; i < 3; i++)
|
||||
|
||||
#define NUM_GROUP_ELEMENTS 10000
|
||||
#define NUM_GROUP_ELEMENTS 50000
|
||||
|
||||
typedef struct {
|
||||
double x[3];
|
||||
@ -22,6 +22,14 @@ typedef struct {
|
||||
double y;
|
||||
} point_t;
|
||||
|
||||
typdef struct {
|
||||
double x;
|
||||
double y;
|
||||
double angle;
|
||||
vector_t fp[3];
|
||||
groupelement_t *g;
|
||||
} limit_curve_t;
|
||||
|
||||
typedef struct {
|
||||
// infos about the screen to draw on
|
||||
cairo_t *cairo;
|
||||
@ -44,9 +52,14 @@ typedef struct {
|
||||
int limit_with_lines;
|
||||
int show_marking;
|
||||
point_t marking;
|
||||
point_t marking2;
|
||||
point_t marking3;
|
||||
double distance_parameter1;
|
||||
double distance_parameter2;
|
||||
int show_coxeter_orbit;
|
||||
int use_repelling;
|
||||
gsl_matrix *cartan, *cob;
|
||||
char *extra_text;
|
||||
|
||||
// precomputed and constant
|
||||
groupelement_t *group;
|
||||
|
Loading…
Reference in New Issue
Block a user