Compare commits
4 Commits
public
...
asymmetric
Author | SHA1 | Date | |
---|---|---|---|
|
015b391cc0 | ||
|
d71b1b9507 | ||
|
ca8799702d | ||
|
35932782e9 |
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
*.o
|
||||
limit_set
|
||||
*.pdf
|
11
Makefile
11
Makefile
@ -1,4 +1,4 @@
|
||||
HEADERS=triangle.h linalg.h queue.h initcairo.h main.h
|
||||
HEADERS=triangle.h linalg.h queue.h initcairo.h main.h exp_equation.h
|
||||
|
||||
SPECIAL_OPTIONS=-O0 -g -D_DEBUG
|
||||
#SPECIAL_OPTIONS=-O3 -pg -funroll-loops -fno-inline
|
||||
@ -11,8 +11,8 @@ OPTIONS=$(GENERAL_OPTIONS) $(CAIRO_OPTIONS) $(SPECIAL_OPTIONS)
|
||||
|
||||
all: limit_set
|
||||
|
||||
limit_set: limit_set.o linalg.o triangle.o initcairo.o draw.o main.o
|
||||
gcc $(OPTIONS) -o limit_set limit_set.o linalg.o triangle.o initcairo.o draw.o main.o -lm -lgsl -lcblas -lcairo -lX11
|
||||
limit_set: limit_set.o linalg.o triangle.o initcairo.o draw.o main.o exp_equation.o
|
||||
gcc $(OPTIONS) -o limit_set limit_set.o linalg.o triangle.o initcairo.o draw.o main.o exp_equation.o -lm -lgsl -lcblas -lcairo -lX11
|
||||
|
||||
linalg.o: linalg.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c linalg.c
|
||||
@ -32,5 +32,8 @@ draw.o: draw.c $(HEADERS)
|
||||
main.o: main.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c main.c
|
||||
|
||||
exp_equation.o: exp_equation.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c exp_equation.c
|
||||
|
||||
clean:
|
||||
rm -f limit_set linalg.o triangle.o limit_set.o draw.o main.o
|
||||
rm -f limit_set linalg.o triangle.o limit_set.o draw.o main.o exp_equation.o
|
||||
|
183
exp_equation.c
Normal file
183
exp_equation.c
Normal file
@ -0,0 +1,183 @@
|
||||
#include "main.h"
|
||||
#include "exp_equation.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <gsl/gsl_errno.h>
|
||||
#include <gsl/gsl_math.h>
|
||||
#include <gsl/gsl_roots.h>
|
||||
|
||||
#define EPSILON 1e-9
|
||||
#define LOOP(i) for(int i = 0; i < 3; i++)
|
||||
|
||||
struct solve_exp_plus_exp_params
|
||||
{
|
||||
double alpha;
|
||||
double beta;
|
||||
double x;
|
||||
};
|
||||
|
||||
static double solve_exp_plus_exp_f(double t, void *_params)
|
||||
{
|
||||
struct solve_exp_plus_exp_params *params = (struct solve_exp_plus_exp_params*)_params;
|
||||
|
||||
// return exp(params->alpha * t) + exp(params->beta * t) - params->x;
|
||||
return log(exp(params->alpha * t) + exp(params->beta * t)) - log(params->x);
|
||||
}
|
||||
|
||||
static double solve_exp_plus_exp_df(double t, void *_params)
|
||||
{
|
||||
struct solve_exp_plus_exp_params *params = (struct solve_exp_plus_exp_params*)_params;
|
||||
|
||||
// return params->alpha * exp(params->alpha * t) + params->beta * exp(params->beta * t);
|
||||
return params->alpha + (params->beta - params->alpha) / (1 + exp((params->alpha-params->beta)*t));
|
||||
}
|
||||
|
||||
static void solve_exp_plus_exp_fdf(double t, void *params, double *f, double *df)
|
||||
{
|
||||
*f = solve_exp_plus_exp_f(t, params);
|
||||
*df = solve_exp_plus_exp_df(t, params);
|
||||
}
|
||||
|
||||
// solve the equation exp(alpha t) + exp(beta t) = x for t
|
||||
int solve_exp_plus_exp(double alpha, double beta, double x, double *t)
|
||||
{
|
||||
if(alpha <= 0 && beta >= 0 || alpha >= 0 && beta <= 0) {
|
||||
double critical =
|
||||
pow(-beta/alpha, alpha/(alpha-beta)) +
|
||||
pow(-beta/alpha, beta/(alpha-beta));
|
||||
|
||||
if(x < critical)
|
||||
return 0;
|
||||
else if (x < critical + EPSILON) {
|
||||
t[0] = log(-beta/alpha)/(alpha-beta);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Newton this
|
||||
gsl_root_fdfsolver *solver = gsl_root_fdfsolver_alloc(gsl_root_fdfsolver_newton);
|
||||
struct solve_exp_plus_exp_params params;
|
||||
params.alpha = alpha;
|
||||
params.beta = beta;
|
||||
params.x = x;
|
||||
gsl_function_fdf FDF;
|
||||
FDF.f = &solve_exp_plus_exp_f;
|
||||
FDF.df = &solve_exp_plus_exp_df;
|
||||
FDF.fdf = &solve_exp_plus_exp_fdf;
|
||||
FDF.params = (void *)¶ms;
|
||||
int status;
|
||||
double root, lastroot;
|
||||
|
||||
for(int r = 0; r < 2; r++) {
|
||||
root = r == 0 ? log(x)/beta : log(x)/alpha;
|
||||
gsl_root_fdfsolver_set(solver, &FDF, root);
|
||||
for(int i = 0; i < 100; i++) {
|
||||
gsl_root_fdfsolver_iterate(solver);
|
||||
lastroot = root;
|
||||
root = gsl_root_fdfsolver_root(solver);
|
||||
status = gsl_root_test_delta(root, lastroot, 0, 1e-9);
|
||||
|
||||
if(status == GSL_SUCCESS)
|
||||
break;
|
||||
|
||||
// printf("iteration %d, root %f\n", i, root);
|
||||
}
|
||||
t[r] = root;
|
||||
}
|
||||
|
||||
gsl_root_fdfsolver_free(solver);
|
||||
|
||||
return 2;
|
||||
} else {
|
||||
// Newton with start value 0
|
||||
gsl_root_fdfsolver *solver = gsl_root_fdfsolver_alloc(gsl_root_fdfsolver_newton);
|
||||
struct solve_exp_plus_exp_params params;
|
||||
params.alpha = alpha;
|
||||
params.beta = beta;
|
||||
params.x = x;
|
||||
gsl_function_fdf FDF;
|
||||
FDF.f = &solve_exp_plus_exp_f;
|
||||
FDF.df = &solve_exp_plus_exp_df;
|
||||
FDF.fdf = &solve_exp_plus_exp_fdf;
|
||||
FDF.params = (void *)¶ms;
|
||||
int status;
|
||||
double root, lastroot;
|
||||
|
||||
root = 0;
|
||||
gsl_root_fdfsolver_set(solver, &FDF, root);
|
||||
for(int i = 0; i < 100; i++) {
|
||||
gsl_root_fdfsolver_iterate(solver);
|
||||
lastroot = root;
|
||||
root = gsl_root_fdfsolver_root(solver);
|
||||
status = gsl_root_test_delta(root, lastroot, 0, 1e-9);
|
||||
|
||||
// printf("iteration %d, root %f\n", i, root);
|
||||
|
||||
if(status == GSL_SUCCESS)
|
||||
break;
|
||||
}
|
||||
t[0] = root;
|
||||
|
||||
gsl_root_fdfsolver_free(solver);
|
||||
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// solve the equation x1 exp(a1 t) + x2 exp(a2 t) + x3 exp(a3 t) = 0
|
||||
int solve_linear_exp(vector_t a, vector_t x, double *t)
|
||||
{
|
||||
if(x.x[0] > 0 && x.x[1] > 0 && x.x[2] > 0 ||
|
||||
x.x[0] < 0 && x.x[1] < 0 && x.x[2] < 0)
|
||||
return 0;
|
||||
|
||||
// ensure that y[0] < 0 and y[1], y[2] > 0
|
||||
int j;
|
||||
vector_t y, b;
|
||||
for(j = 0; j < 3; j++)
|
||||
if(x.x[(j+1)%3] * x.x[(j+2)%3] > 0)
|
||||
break;
|
||||
LOOP(i) y.x[i] = x.x[(i+j)%3];
|
||||
if(y.x[0] > 0)
|
||||
LOOP(i) y.x[i] *= -1;
|
||||
LOOP(i) b.x[i] = a.x[(i+j)%3];
|
||||
|
||||
double T = (log(y.x[1]) - log(y.x[2])) / (b.x[2] - b.x[1]);
|
||||
double rhs = - y.x[0] *
|
||||
pow(y.x[1], (b.x[0]-b.x[2])/(b.x[2]-b.x[1])) *
|
||||
pow(y.x[2], (b.x[0]-b.x[1])/(b.x[1]-b.x[2]));
|
||||
|
||||
int n = solve_exp_plus_exp(b.x[1] - b.x[0], b.x[2] - b.x[0], rhs, t);
|
||||
|
||||
for(int i = 0; i < n; i++)
|
||||
t[i] += T;
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
/*
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
// int n = solve_exp_plus_exp(atof(argv[1]), atof(argv[2]), atof(argv[3]), result);
|
||||
|
||||
double result[2];
|
||||
vector_t a, x;
|
||||
a.x[0] = atof(argv[1]);
|
||||
a.x[1] = atof(argv[2]);
|
||||
a.x[2] = atof(argv[3]);
|
||||
x.x[0] = atof(argv[4]);
|
||||
x.x[1] = atof(argv[5]);
|
||||
x.x[2] = atof(argv[6]);
|
||||
int n = solve_linear_exp(a, x, result);
|
||||
|
||||
if(n == 0)
|
||||
printf("0 results found\n");
|
||||
else if(n == 1)
|
||||
printf("1 result found: %.9f\n", result[0]);
|
||||
else if(n == 2)
|
||||
printf("2 results found: %.9f and %.9f\n", result[0], result[1]);
|
||||
else
|
||||
printf("%d results found\n", n);
|
||||
return 0;
|
||||
}
|
||||
*/
|
14
exp_equation.h
Normal file
14
exp_equation.h
Normal file
@ -0,0 +1,14 @@
|
||||
#ifndef EXP_EQUATION_H
|
||||
#define EXP_EQUATION_H
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <gsl/gsl_errno.h>
|
||||
#include <gsl/gsl_math.h>
|
||||
#include <gsl/gsl_roots.h>
|
||||
|
||||
int solve_exp_plus_exp(double alpha, double beta, double x, double *t);
|
||||
int solve_linear_exp(vector_t a, vector_t x, double *t);
|
||||
|
||||
#endif
|
11
limit_set.c
11
limit_set.c
@ -63,7 +63,7 @@ int computeLimitCurve(DrawingContext *ctx)
|
||||
|
||||
for(int i = 0; i < ctx->n_group_elements; i++) {
|
||||
multiply_many(ws, fixedpoints_pos, 3, cob_pos, elements[i], coxeter_fixedpoints_pos);
|
||||
ctx->limit_curve[3*i+2] = atan2(
|
||||
ctx->limit_curve[12*i+2] = atan2(
|
||||
gsl_matrix_get(fixedpoints_pos, 2, column)/gsl_matrix_get(fixedpoints_pos, 0, column),
|
||||
gsl_matrix_get(fixedpoints_pos, 1, column)/gsl_matrix_get(fixedpoints_pos, 0, column));
|
||||
}
|
||||
@ -85,8 +85,8 @@ int computeLimitCurve(DrawingContext *ctx)
|
||||
for(int i = 0; i < ctx->n_group_elements; i++) {
|
||||
multiply_many(ws, fixedpoints, 3, ctx->cob, elements[i], coxeter_fixedpoints);
|
||||
|
||||
x = ctx->limit_curve[3*i ] = gsl_matrix_get(fixedpoints, 0, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
y = ctx->limit_curve[3*i+1] = gsl_matrix_get(fixedpoints, 1, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
x = ctx->limit_curve[12*i ] = gsl_matrix_get(fixedpoints, 0, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
y = ctx->limit_curve[12*i+1] = gsl_matrix_get(fixedpoints, 1, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
|
||||
if((x - ctx->marking.x)*(x - ctx->marking.x) + (y - ctx->marking.y)*(y - ctx->marking.y) < 25e-10)
|
||||
{
|
||||
@ -96,11 +96,14 @@ int computeLimitCurve(DrawingContext *ctx)
|
||||
fputc('\n',stdout);
|
||||
}
|
||||
|
||||
multiply_many(ws, fixedpoints, 2, elements[i], coxeter_fixedpoints);
|
||||
LOOP(j) LOOP(k) ctx->limit_curve[12*i+3+3*j+k] = gsl_matrix_get(fixedpoints, k, j);
|
||||
|
||||
// bca abc acb = abc
|
||||
|
||||
}
|
||||
|
||||
qsort(ctx->limit_curve, ctx->n_group_elements, 3*sizeof(double), compareAngle);
|
||||
qsort(ctx->limit_curve, ctx->n_group_elements, 12*sizeof(double), compareAngle);
|
||||
|
||||
ctx->limit_curve_count = ctx->n_group_elements;
|
||||
|
||||
|
27
linalg.c
27
linalg.c
@ -315,7 +315,6 @@ int diagonalize_symmetric_form(gsl_matrix *A, gsl_matrix *cob, workspace_t *ws)
|
||||
ERROR(r, "gsl_eigen_symmv failed!\n");
|
||||
|
||||
gsl_eigen_symmv_sort(ws->eval_real, cob, GSL_EIGEN_SORT_VAL_ASC);
|
||||
|
||||
gsl_matrix_transpose(cob);
|
||||
|
||||
int positive = 0;
|
||||
@ -332,6 +331,32 @@ int diagonalize_symmetric_form(gsl_matrix *A, gsl_matrix *cob, workspace_t *ws)
|
||||
return positive;
|
||||
}
|
||||
|
||||
int diagonalize_symmetric_matrix(gsl_matrix *A, gsl_matrix *cob, double *eval, workspace_t *ws)
|
||||
{
|
||||
gsl_matrix *A_ = getTempMatrix(ws);
|
||||
|
||||
gsl_matrix_memcpy(A_, A);
|
||||
int r = gsl_eigen_symmv (A_, ws->eval_real, cob, ws->work_symmv);
|
||||
ERROR(r, "gsl_eigen_symmv failed!\n");
|
||||
|
||||
gsl_eigen_symmv_sort(ws->eval_real, cob, GSL_EIGEN_SORT_VAL_ASC);
|
||||
|
||||
gsl_matrix_transpose(cob);
|
||||
|
||||
int positive = 0;
|
||||
|
||||
for(int i = 0; i < ws->n; i++) {
|
||||
if(eval)
|
||||
eval[i] = gsl_vector_get(ws->eval_real, i);
|
||||
|
||||
if(gsl_vector_get(ws->eval_real, i) > 0)
|
||||
positive++;
|
||||
}
|
||||
|
||||
releaseTempMatrices(ws, 1);
|
||||
return positive;
|
||||
}
|
||||
|
||||
// computes a matrix in SL(3, R) which projectively transforms (e1, e2, e3, e1+e2+e3) to the 4 given vectors
|
||||
void projective_frame(gsl_vector **vertices, gsl_matrix *result, workspace_t *ws)
|
||||
{
|
||||
|
1
linalg.h
1
linalg.h
@ -53,6 +53,7 @@ int real_eigenvectors(gsl_matrix *g, gsl_matrix *evec, workspace_t *ws);
|
||||
int real_eigenvalues(gsl_matrix *g, gsl_vector *evec, workspace_t *ws);
|
||||
void eigenvectors_symm(gsl_matrix *g, gsl_vector *eval, gsl_matrix *evec, workspace_t *ws);
|
||||
int diagonalize_symmetric_form(gsl_matrix *A, gsl_matrix *cob, workspace_t *ws);
|
||||
int diagonalize_symmetric_matrix(gsl_matrix *A, gsl_matrix *cob, double *eval, workspace_t *ws);
|
||||
void projective_frame(gsl_vector **vertices, gsl_matrix *result, workspace_t *ws);
|
||||
void rotation_frame(gsl_matrix *rotation, gsl_matrix *result, workspace_t *ws);
|
||||
|
||||
|
52
main.c
52
main.c
@ -45,9 +45,17 @@ void setupContext(DrawingContext *ctx, int argc, char *argv[])
|
||||
ctx->show_marking = 1;
|
||||
ctx->marking.x = -0.73679;
|
||||
ctx->marking.y = -0.01873;
|
||||
ctx->marking2.x = -0.73679;
|
||||
ctx->marking2.y = -0.11873;
|
||||
ctx->marking3.x = -0.73679;
|
||||
ctx->marking3.y = -0.21873;
|
||||
ctx->distance_parameter1 = 0.45;
|
||||
ctx->distance_parameter2 = 0.2;
|
||||
ctx->show_coxeter_orbit = 0;
|
||||
ctx->extra_text = malloc(1000*sizeof(char));
|
||||
memset(ctx->extra_text, 0, 1000*sizeof(char));
|
||||
|
||||
ctx->limit_curve = malloc(3*ctx->n_group_elements*sizeof(double));
|
||||
ctx->limit_curve = malloc(12*ctx->n_group_elements*sizeof(double));
|
||||
ctx->limit_curve_count = -1;
|
||||
|
||||
ctx->group = malloc(ctx->n_group_elements*sizeof(groupelement_t));
|
||||
@ -63,6 +71,7 @@ void destroyContext(DrawingContext *ctx)
|
||||
{
|
||||
free(ctx->limit_curve);
|
||||
free(ctx->group);
|
||||
free(ctx->extra_text);
|
||||
|
||||
gsl_matrix_free(ctx->cartan);
|
||||
gsl_matrix_free(ctx->cob);
|
||||
@ -70,17 +79,15 @@ void destroyContext(DrawingContext *ctx)
|
||||
workspace_free(ctx->ws);
|
||||
}
|
||||
|
||||
void computeRotationMatrix(DrawingContext *ctx, gsl_matrix *result, const char *type)
|
||||
void computeRotationMatrix(DrawingContext *ctx, gsl_matrix *result, const char *word)
|
||||
{
|
||||
gsl_matrix *tmp = getTempMatrix(ctx->ws);
|
||||
gsl_matrix **gen = getTempMatrices(ctx->ws, 3);
|
||||
|
||||
// ERROR(strlen(type) != 2, "Invalid call of computeRotationMatrix()\n");
|
||||
|
||||
initializeTriangleGenerators(gen, ctx->cartan);
|
||||
gsl_matrix_set_identity(tmp);
|
||||
for(int i = 0; i < strlen(type); i++)
|
||||
multiply_right(tmp, gen[type[i]-'a'], ctx->ws);
|
||||
for(int i = 0; i < strlen(word); i++)
|
||||
multiply_right(tmp, gen[word[i]-'a'], ctx->ws);
|
||||
|
||||
rotation_frame(tmp, result, ctx->ws);
|
||||
|
||||
@ -230,7 +237,7 @@ int processEvent(GraphicsInfo *info, XEvent *ev)
|
||||
case ButtonPress:
|
||||
state = ev->xbutton.state & (ShiftMask | LockMask | ControlMask);
|
||||
|
||||
if(ev->xbutton.button == 1 && state & ShiftMask) {
|
||||
if(ev->xbutton.button == 1 && state & ShiftMask && state & ControlMask) {
|
||||
screen_context->marking.x = (double)ev->xbutton.x;
|
||||
screen_context->marking.y = (double)ev->xbutton.y;
|
||||
printf("mouse button pressed: %f, %f\n", screen_context->marking.x, screen_context->marking.y);
|
||||
@ -238,13 +245,30 @@ int processEvent(GraphicsInfo *info, XEvent *ev)
|
||||
cairo_device_to_user(screen_context->cairo, &screen_context->marking.x, &screen_context->marking.y);
|
||||
printf("mouse button pressed transformed: %f, %f\n", screen_context->marking.x, screen_context->marking.y);
|
||||
return STATUS_REDRAW;
|
||||
} else if(ev->xbutton.button == 1 && state & ControlMask) {
|
||||
screen_context->marking2.x = (double)ev->xbutton.x;
|
||||
screen_context->marking2.y = (double)ev->xbutton.y;
|
||||
printf("mouse button pressed: %f, %f\n", screen_context->marking2.x, screen_context->marking2.y);
|
||||
cairo_set_matrix(screen_context->cairo, &screen_context->dim->matrix);
|
||||
cairo_device_to_user(screen_context->cairo, &screen_context->marking2.x, &screen_context->marking2.y);
|
||||
printf("mouse button pressed transformed: %f, %f\n", screen_context->marking2.x, screen_context->marking2.y);
|
||||
return STATUS_REDRAW;
|
||||
} else if(ev->xbutton.button == 1 && state & ShiftMask) {
|
||||
screen_context->marking3.x = (double)ev->xbutton.x;
|
||||
screen_context->marking3.y = (double)ev->xbutton.y;
|
||||
printf("mouse button pressed: %f, %f\n", screen_context->marking3.x, screen_context->marking3.y);
|
||||
cairo_set_matrix(screen_context->cairo, &screen_context->dim->matrix);
|
||||
cairo_device_to_user(screen_context->cairo, &screen_context->marking3.x, &screen_context->marking3.y);
|
||||
printf("mouse button pressed transformed: %f, %f\n", screen_context->marking3.x, screen_context->marking3.y);
|
||||
return STATUS_REDRAW;
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case KeyPress:
|
||||
state = ev->xkey.state & (ShiftMask | LockMask | ControlMask);
|
||||
key = XkbKeycodeToKeysym(ev->xkey.display, ev->xkey.keycode, 0, !!(state & ShiftMask));
|
||||
printf("Key pressed: %ld\n", key);
|
||||
// printf("Key pressed: %ld\n", key);
|
||||
|
||||
switch(key) {
|
||||
case XK_Down:
|
||||
@ -331,6 +355,16 @@ int processEvent(GraphicsInfo *info, XEvent *ev)
|
||||
case 'p':
|
||||
print(screen_context);
|
||||
break;
|
||||
case 'P':
|
||||
for(int i = 0; i <= 100; i++) {
|
||||
for(int j = 0; j <= 100; j++) {
|
||||
screen_context->distance_parameter1 = 0.02*i;
|
||||
screen_context->distance_parameter2 = 0.02*j;
|
||||
draw(screen_context);
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
break;
|
||||
case 'M':
|
||||
/*
|
||||
screen_context->limit_with_lines = 0;
|
||||
@ -444,7 +478,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
gettimeofday(¤t_time, 0);
|
||||
end_time = current_time.tv_sec + current_time.tv_usec*1e-6;
|
||||
printf("drawing finished in %.2f milliseconds, of which %.2f milliseconds were buffer switching\n", (end_time - start_time) * 1000, (end_time - intermediate_time) * 1000);
|
||||
// printf("drawing finished in %.2f milliseconds, of which %.2f milliseconds were buffer switching\n", (end_time - start_time) * 1000, (end_time - intermediate_time) * 1000);
|
||||
}
|
||||
waitUpdateTimer(info);
|
||||
}
|
||||
|
13
main.h
13
main.h
@ -22,6 +22,14 @@ typedef struct {
|
||||
double y;
|
||||
} point_t;
|
||||
|
||||
typdef struct {
|
||||
double x;
|
||||
double y;
|
||||
double angle;
|
||||
vector_t fp[3];
|
||||
groupelement_t *g;
|
||||
} limit_curve_t;
|
||||
|
||||
typedef struct {
|
||||
// infos about the screen to draw on
|
||||
cairo_t *cairo;
|
||||
@ -44,9 +52,14 @@ typedef struct {
|
||||
int limit_with_lines;
|
||||
int show_marking;
|
||||
point_t marking;
|
||||
point_t marking2;
|
||||
point_t marking3;
|
||||
double distance_parameter1;
|
||||
double distance_parameter2;
|
||||
int show_coxeter_orbit;
|
||||
int use_repelling;
|
||||
gsl_matrix *cartan, *cob;
|
||||
char *extra_text;
|
||||
|
||||
// precomputed and constant
|
||||
groupelement_t *group;
|
||||
|
Loading…
Reference in New Issue
Block a user