triangle group code reorganization
This commit is contained in:
parent
587a96e54a
commit
1ec2a49983
18
Makefile
18
Makefile
@ -1,8 +1,8 @@
|
||||
HEADERS=triangle.h linalg.h queue.h initcairo.h
|
||||
HEADERS=triangle.h linalg.h queue.h initcairo.h main.h
|
||||
|
||||
#SPECIAL_OPTIONS=-O0 -g -D_DEBUG
|
||||
SPECIAL_OPTIONS=-O0 -g -D_DEBUG
|
||||
#SPECIAL_OPTIONS=-O3 -pg -funroll-loops -fno-inline
|
||||
SPECIAL_OPTIONS=-O3 -flto -funroll-loops -Winline -Wall -Wno-unused-function -Werror=implicit-function-declaration
|
||||
#SPECIAL_OPTIONS=-O3 -flto -funroll-loops -Winline -Wall -Wno-unused-function -Werror=implicit-function-declaration
|
||||
#SPECIAL_OPTIONS=
|
||||
|
||||
CAIRO_OPTIONS=$(shell pkg-config --cflags cairo)
|
||||
@ -11,8 +11,8 @@ OPTIONS=$(GENERAL_OPTIONS) $(CAIRO_OPTIONS) $(SPECIAL_OPTIONS)
|
||||
|
||||
all: limit_set
|
||||
|
||||
limit_set: limit_set.o linalg.o triangle.o initcairo.o
|
||||
gcc $(OPTIONS) -o limit_set limit_set.o linalg.o triangle.o initcairo.o -lm -lgsl -lcblas -lcairo -lX11
|
||||
limit_set: limit_set.o linalg.o triangle.o initcairo.o draw.o main.o
|
||||
gcc $(OPTIONS) -o limit_set limit_set.o linalg.o triangle.o initcairo.o draw.o main.o -lm -lgsl -lcblas -lcairo -lX11
|
||||
|
||||
linalg.o: linalg.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c linalg.c
|
||||
@ -26,5 +26,11 @@ limit_set.o: limit_set.c $(HEADERS)
|
||||
initcairo.o: initcairo.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c initcairo.c
|
||||
|
||||
draw.o: draw.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c draw.c
|
||||
|
||||
main.o: main.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c main.c
|
||||
|
||||
clean:
|
||||
rm -f limit_set linalg.o triangle.o limit_set.o
|
||||
rm -f limit_set linalg.o triangle.o limit_set.o draw.o main.o
|
||||
|
407
draw.c
Normal file
407
draw.c
Normal file
@ -0,0 +1,407 @@
|
||||
#include "main.h"
|
||||
|
||||
// level 0: helper functions
|
||||
|
||||
vector_t cross(vector_t a, vector_t b)
|
||||
{
|
||||
vector_t result;
|
||||
result.x[0] = a.x[1]*b.x[2] - a.x[2]*b.x[1];
|
||||
result.x[1] = a.x[2]*b.x[0] - a.x[0]*b.x[2];
|
||||
result.x[2] = a.x[0]*b.x[1] - a.x[1]*b.x[0];
|
||||
return result;
|
||||
}
|
||||
|
||||
vector_t apply(DrawingContext *ctx, gsl_matrix *m, vector_t x)
|
||||
{
|
||||
gsl_vector *tmp = getTempVector(ctx);
|
||||
gsl_vector *tmp2 = getTempVector(ctx);
|
||||
vector_t out;
|
||||
|
||||
LOOP(i) gsl_vector_set(tmp, i, x.x[i]);
|
||||
gsl_blas_dgemv(CblasNoTrans, 1.0, m, tmp, 0.0, tmp2);
|
||||
LOOP(i) out.x[i] = gsl_vector_get(tmp2, i);
|
||||
|
||||
releaseTempVectors(ctx, 2);
|
||||
}
|
||||
|
||||
int fixedPoints(DrawingContext *ctx, const char *word, vector_t *out)
|
||||
{
|
||||
gsl_matrix *tmp = getTempMatrix(ctx);
|
||||
gsl_matrix *ev = getTempMatrix(ctx);
|
||||
gsl_matrix **gen = getTempMatrices(ctx, 3);
|
||||
|
||||
initializeTriangleGenerators(gen, ctx->cartan);
|
||||
|
||||
gsl_matrix_set_identity(tmp);
|
||||
for(int i = 0; i < strlen(word); i++) {
|
||||
if(word[i] == ' ')
|
||||
continue;
|
||||
multiply_right(tmp, gen[word[i]-'a'], ctx->ws);
|
||||
}
|
||||
int count = real_eigenvectors(tmp, ev, ctx->ws);
|
||||
|
||||
LOOP(i) LOOP(j) out[i].x[j] = gsl_matrix_get(ev, j, i);
|
||||
|
||||
releaseTempMatrices(ctx, 5);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
void transformFrameStd(DrawingContext *ctx, vector_t *x, gsl_matrix *out)
|
||||
{
|
||||
gsl_matrix *tmp = getTempMatrix(ctx);
|
||||
gsl_vector *fourth = getTempVector(ctx);
|
||||
gsl_vector *lambda = getTempVector(ctx);
|
||||
int s;
|
||||
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(out, j, i, x[i].x[j]);
|
||||
gsl_matrix_memcpy(tmp, out);
|
||||
gsl_linalg_LU_decomp(tmp, ctx->ws->permutation, &s);
|
||||
gsl_linalg_LU_solve(tmp, ctx->ws->permutation, fourth, lambda);
|
||||
|
||||
LOOP(i) LOOP(j) *gsl_matrix_ptr(out, i, j) *= gsl_vector_get(lambda, j);
|
||||
|
||||
gsl_matrix_fprintf(stdout, out, "%f");
|
||||
|
||||
releaseTempMatrices(ctx, 1);
|
||||
releaseTempVectors(ctx, 2);
|
||||
}
|
||||
|
||||
// level 1: the elementary drawing functions, drawPoint, drawSegment2d
|
||||
|
||||
void drawPoint(DrawingContext *ctx, point_t p)
|
||||
{
|
||||
cairo_t *C = ctx->cairo;
|
||||
|
||||
cairo_save(C);
|
||||
cairo_move_to(C, p.x, p.y);
|
||||
cairo_close_path(C);
|
||||
cairo_set_line_cap(C, CAIRO_LINE_CAP_ROUND);
|
||||
cairo_set_line_width(C, 10.0/ctx->dim->scalefactor);
|
||||
cairo_stroke(C);
|
||||
cairo_restore(C);
|
||||
}
|
||||
|
||||
void drawSegment2d(DrawingContext *ctx, point_t a, point_t b)
|
||||
{
|
||||
cairo_t *C = ctx->cairo;
|
||||
cairo_move_to(C, a.x, a.y);
|
||||
cairo_line_to(C, b.x, b.y);
|
||||
cairo_stroke(C);
|
||||
}
|
||||
|
||||
// level 2: drawVector, drawCovector, drawSegment
|
||||
|
||||
static point_t vectorToPoint(DrawingContext *ctx, vector_t in)
|
||||
{
|
||||
double x[3];
|
||||
point_t out;
|
||||
|
||||
LOOP(i) x[i] = 0.0;
|
||||
LOOP(i) LOOP(j) x[i] += gsl_matrix_get(ctx->cob, i, j) * in.x[j];
|
||||
|
||||
out.x = x[0] / x[2];
|
||||
out.y = x[1] / x[2];
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void drawVector(DrawingContext *ctx, vector_t v)
|
||||
{
|
||||
drawPoint(ctx, vectorToPoint(ctx, v));
|
||||
}
|
||||
|
||||
static void drawImplicitLine(DrawingContext *ctx, double a, double b, double c)
|
||||
{
|
||||
double norm, lambda;
|
||||
point_t m, s, xminus, xplus;
|
||||
m.x = ctx->dim->center_x;
|
||||
m.y = ctx->dim->center_y;
|
||||
lambda = (a*m.x + b*m.y + c)/(a*a + b*b);
|
||||
s.x = m.x - lambda*a;
|
||||
s.y = m.y - lambda*b;
|
||||
norm = sqrt(a*a + b*b);
|
||||
xminus.x = s.x - ctx->dim->radius * b / norm;
|
||||
xminus.y = s.y + ctx->dim->radius * a / norm;
|
||||
xplus.x = s.x + ctx->dim->radius * b / norm;
|
||||
xplus.y = s.y - ctx->dim->radius * a / norm;
|
||||
|
||||
drawSegment2d(ctx, xminus, xplus);
|
||||
}
|
||||
|
||||
void drawCovector(DrawingContext *ctx, vector_t v)
|
||||
{
|
||||
double x[3];
|
||||
double cofactor;
|
||||
|
||||
LOOP(i) x[i] = 0.0;
|
||||
LOOP(i) LOOP(j) {
|
||||
cofactor = gsl_matrix_get(ctx->cob, (i+1)%3, (j+1)%3) * gsl_matrix_get(ctx->cob, (i+2)%3, (j+2)%3)
|
||||
- gsl_matrix_get(ctx->cob, (i+1)%3, (j+2)%3) * gsl_matrix_get(ctx->cob, (i+2)%3, (j+1)%3);
|
||||
x[i] += cofactor * v.x[j];
|
||||
}
|
||||
|
||||
drawImplicitLine(ctx, x[0], x[1], x[2]);
|
||||
}
|
||||
|
||||
void drawSegment(DrawingContext *ctx, vector_t a, vector_t b)
|
||||
{
|
||||
drawSegment2d(ctx, vectorToPoint(ctx, a), vectorToPoint(ctx, b));
|
||||
}
|
||||
|
||||
// level 3: boxes and polygons
|
||||
|
||||
void drawPolygon(DrawingContext *ctx, int sides, ...)
|
||||
{
|
||||
va_list args;
|
||||
vector_t first, prev, current;
|
||||
|
||||
va_start(args, sides);
|
||||
|
||||
first = va_arg(args, vector_t);
|
||||
current = first;
|
||||
for(int i = 0; i < sides-1; i++) {
|
||||
prev = current;
|
||||
current = va_arg(args, vector_t);
|
||||
drawSegment(ctx, prev, current);
|
||||
}
|
||||
drawSegment(ctx, current, first);
|
||||
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
void drawTriangle(DrawingContext *ctx, const char *word)
|
||||
{
|
||||
vector_t p[3];
|
||||
|
||||
fixedPoints(ctx, word, p);
|
||||
drawPolygon(ctx, 3, p[0], p[1], p[2]);
|
||||
}
|
||||
|
||||
void drawBox(DrawingContext *ctx, const char *word1, const char *word2)
|
||||
{
|
||||
vector_t p[2][3],i[2];
|
||||
|
||||
fixedPoints(ctx, word1, p[0]);
|
||||
fixedPoints(ctx, word2, p[1]);
|
||||
|
||||
// intersect attracting line with neutral line of the other element
|
||||
for(int j = 0; j < 2; j++)
|
||||
i[j] = cross(cross(p[j%2][0],p[j%2][1]),cross(p[(j+1)%2][0],p[(j+1)%2][2]));
|
||||
|
||||
drawPolygon(ctx, 4, p[0][0], i[0], p[1][0], i[1]);
|
||||
}
|
||||
|
||||
void drawBoxStd(DrawingContext *ctx, const char *word, char base)
|
||||
{
|
||||
char word1[100];
|
||||
char word2[100];
|
||||
|
||||
int len = strlen(word);
|
||||
if(len*2 + 4 > 100)
|
||||
return;
|
||||
|
||||
for(int i = 0; i < len; i++) {
|
||||
word1[i] = word1[2*len+2-i] = word[i];
|
||||
word2[i] = word2[2*len+2-i] = word[i];
|
||||
}
|
||||
word1[2*len+3] = 0;
|
||||
word2[2*len+3] = 0;
|
||||
|
||||
LOOP(i) word1[len+i] = (base-'A'+6+i+1)%3+'a';
|
||||
LOOP(i) word2[len+i] = (base-'A'+6-i-1)%3+'a';
|
||||
|
||||
// printf("Words: %s %s\n", word1, word2);
|
||||
|
||||
drawBox(ctx, word1, word2);
|
||||
}
|
||||
|
||||
// level 4: draw the actual image components
|
||||
|
||||
void drawReflectors(DrawingContext *ctx)
|
||||
{
|
||||
vector_t v[3];
|
||||
|
||||
cairo_set_source_rgb(ctx->cairo, 0, 0, 0);
|
||||
|
||||
LOOP(i) LOOP(j) { v[i].x[j] = (i==j) ? 1.0 : 0.0; }
|
||||
LOOP(i) drawVector(ctx, v[i]);
|
||||
|
||||
LOOP(i) LOOP(j) v[i].x[j] = gsl_matrix_get(ctx->cartan, i, j);
|
||||
LOOP(i) drawCovector(ctx, v[i]);
|
||||
}
|
||||
|
||||
void drawAttractors(DrawingContext *ctx)
|
||||
{
|
||||
vector_t p[3][3];
|
||||
vector_t l[3][3];
|
||||
|
||||
fixedPoints(ctx, "abc", p[0]);
|
||||
fixedPoints(ctx, "bca", p[1]);
|
||||
fixedPoints(ctx, "cab", p[2]);
|
||||
|
||||
double color[3][3] = {{1,0,0},{0,0.7,0},{0,0,1}};
|
||||
|
||||
LOOP(i) LOOP(j) l[i][j] = cross(p[i][(3-j)%3], p[i][(4-j)%3]);
|
||||
|
||||
LOOP(i) LOOP(j) {
|
||||
cairo_set_source_rgb(ctx->cairo, color[i][0], color[i][1], color[i][2]);
|
||||
drawVector(ctx, p[i][j]);
|
||||
}
|
||||
|
||||
LOOP(i) LOOP(j) {
|
||||
cairo_set_source_rgb(ctx->cairo, color[i][0], color[i][1], color[i][2]);
|
||||
drawCovector(ctx, l[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
void drawBoxes(DrawingContext *ctx)
|
||||
{
|
||||
cairo_t *C = ctx->cairo;
|
||||
|
||||
/*
|
||||
cairo_set_source_rgb(C, 1, 0, 0);
|
||||
drawTriangle(ctx, "abc");
|
||||
cairo_set_source_rgb(C, 0, 0, 1);
|
||||
drawTriangle(ctx, "aca abc aca");
|
||||
drawTriangle(ctx, "acac abc caca");
|
||||
drawTriangle(ctx, "acaca abc acaca");
|
||||
cairo_set_source_rgb(C, 0, 0.8, 0);
|
||||
drawTriangle(ctx, "cac abc cac");
|
||||
drawTriangle(ctx, "caca abc acac");
|
||||
drawTriangle(ctx, "cacac abc cacac");
|
||||
*/
|
||||
|
||||
cairo_set_source_rgb(C, 1, 0, 0);
|
||||
drawBoxStd(ctx, "c", 'C');
|
||||
drawBoxStd(ctx, "", 'B');
|
||||
drawBoxStd(ctx, "a", 'A');
|
||||
drawBoxStd(ctx, "", 'C');
|
||||
drawBoxStd(ctx, "b", 'B');
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0, 0);
|
||||
drawBoxStd(ctx, "ca", 'A');
|
||||
drawBoxStd(ctx, "cac", 'C');
|
||||
drawBoxStd(ctx, "caca", 'A');
|
||||
drawBoxStd(ctx, "acac", 'C');
|
||||
drawBoxStd(ctx, "aca", 'A');
|
||||
drawBoxStd(ctx, "ac", 'C');
|
||||
|
||||
drawBoxStd(ctx, "aca cb", 'B');
|
||||
drawBoxStd(ctx, "aca cbc", 'C');
|
||||
drawBoxStd(ctx, "aca cbcb", 'B');
|
||||
drawBoxStd(ctx, "aca bcbc", 'C');
|
||||
drawBoxStd(ctx, "aca bcb", 'B');
|
||||
drawBoxStd(ctx, "aca bc", 'C');
|
||||
|
||||
drawBoxStd(ctx, "caca cb", 'B');
|
||||
drawBoxStd(ctx, "caca cbc", 'C');
|
||||
drawBoxStd(ctx, "caca cbcb", 'B');
|
||||
drawBoxStd(ctx, "caca bcbc", 'C');
|
||||
drawBoxStd(ctx, "caca bcb", 'B');
|
||||
drawBoxStd(ctx, "caca bc", 'C');
|
||||
|
||||
cairo_set_source_rgb(C, 1, 0, 1);
|
||||
drawBoxStd(ctx, "ca bc", 'C');
|
||||
drawBoxStd(ctx, "ca bcb", 'B');
|
||||
drawBoxStd(ctx, "ca bcbc", 'C');
|
||||
drawBoxStd(ctx, "ca cbcb", 'B');
|
||||
drawBoxStd(ctx, "ca cbc", 'C');
|
||||
drawBoxStd(ctx, "ca cb", 'B');
|
||||
|
||||
cairo_set_source_rgb(C, 0, 1, 0);
|
||||
// drawBoxStd(ctx, "ca bc", 'C');
|
||||
drawBoxStd(ctx, "cabc ba", 'A');
|
||||
drawBoxStd(ctx, "cabc bab", 'B');
|
||||
drawBoxStd(ctx, "cabc baba", 'A');
|
||||
drawBoxStd(ctx, "cabc abab", 'B');
|
||||
drawBoxStd(ctx, "cabc aba", 'A');
|
||||
drawBoxStd(ctx, "cabc ab", 'B');
|
||||
}
|
||||
|
||||
void drawLimitCurve(DrawingContext *ctx)
|
||||
{
|
||||
cairo_t *C = ctx->cairo;
|
||||
|
||||
cairo_save(C);
|
||||
|
||||
int previous_inside = 0;
|
||||
for(int i = 0; i < ctx->n_group_elements; i++) {
|
||||
double x = ctx->limit_curve[3*i];
|
||||
double y = ctx->limit_curve[3*i+1];
|
||||
|
||||
cairo_user_to_device(C, &x, &y);
|
||||
|
||||
if(-x < ctx->dim->width && x < 3*ctx->dim->width && -y < ctx->dim->height && y < 3*ctx->dim->height) {
|
||||
if(ctx->limit_with_lines) {
|
||||
if(!previous_inside)
|
||||
cairo_move_to(C, ctx->limit_curve[3*i], ctx->limit_curve[3*i+1]);
|
||||
else
|
||||
cairo_line_to(C, ctx->limit_curve[3*i], ctx->limit_curve[3*i+1]);
|
||||
} else {
|
||||
cairo_move_to(C, ctx->limit_curve[3*i], ctx->limit_curve[3*i+1]);
|
||||
cairo_close_path(C);
|
||||
}
|
||||
previous_inside = 1;
|
||||
} else {
|
||||
previous_inside = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if(!ctx->limit_with_lines) { // draw dots instead of lines
|
||||
cairo_set_line_cap(C, CAIRO_LINE_CAP_ROUND);
|
||||
cairo_set_line_width(C, 3.0/ctx->dim->scalefactor);
|
||||
}
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0, 0);
|
||||
cairo_stroke(C);
|
||||
|
||||
cairo_restore(C);
|
||||
}
|
||||
|
||||
void drawText(DrawingContext *ctx)
|
||||
{
|
||||
cairo_move_to(ctx->cairo, 15, 30);
|
||||
cairo_set_source_rgb(ctx->cairo, 0, 0, 0);
|
||||
char buf[100];
|
||||
sprintf(buf, "t = exp(%.8f) = %.8f", log(ctx->parameter), ctx->parameter);
|
||||
cairo_show_text(ctx->cairo, buf);
|
||||
}
|
||||
|
||||
// level 5: put everything together
|
||||
|
||||
void draw(DrawingContext *ctx)
|
||||
{
|
||||
cairo_t *C = ctx->cairo;
|
||||
|
||||
cairo_set_source_rgb(C, 1, 1, 1);
|
||||
cairo_paint(C);
|
||||
|
||||
cairo_set_matrix(C, &ctx->dim->matrix);
|
||||
|
||||
// defaults; use save/restore whenever these are changed
|
||||
cairo_set_line_width(C, 1.0/ctx->dim->scalefactor);
|
||||
cairo_set_font_size(C, 16);
|
||||
cairo_set_line_join(C, CAIRO_LINE_JOIN_BEVEL);
|
||||
cairo_set_line_cap(C, CAIRO_LINE_CAP_ROUND);
|
||||
|
||||
if(ctx->limit_curve_valid) {
|
||||
if(ctx->show_limit)
|
||||
drawLimitCurve(ctx);
|
||||
|
||||
if(ctx->show_boxes)
|
||||
drawBoxes(ctx);
|
||||
|
||||
if(ctx->show_attractors)
|
||||
drawAttractors(ctx);
|
||||
|
||||
if(ctx->show_reflectors)
|
||||
drawReflectors(ctx);
|
||||
}
|
||||
|
||||
cairo_identity_matrix(C); // text is in screen coordinates
|
||||
|
||||
drawText(ctx);
|
||||
|
||||
cairo_surface_flush(cairo_get_target(C));
|
||||
}
|
81
initcairo.c
81
initcairo.c
@ -12,28 +12,11 @@ static Bool alwaysTruePredicate(Display *display, XEvent *event, XPointer arg)
|
||||
return true;
|
||||
}
|
||||
|
||||
// this computes center, radius and scalefactor out of ctx->matrix
|
||||
void updateDimensions(DrawingContext *ctx)
|
||||
{
|
||||
double det = ctx->matrix.xx * ctx->matrix.yy - ctx->matrix.xy * ctx->matrix.yx;
|
||||
double cx = (double)ctx->width/2;
|
||||
double cy = (double)ctx->height/2;
|
||||
double r = 2*sqrt((cx*cx + cy*cy)/det); // this is not safe anymore if we have non-uniform scaling
|
||||
|
||||
// don't use cairo_device_to_user() since the matrix might not be our CTM yet
|
||||
cx -= ctx->matrix.x0;
|
||||
cy -= ctx->matrix.y0;
|
||||
ctx->center_x = ( ctx->matrix.yy * cx - ctx->matrix.xy * cy) / det;
|
||||
ctx->center_y = (- ctx->matrix.yx * cx + ctx->matrix.xx * cy) / det;
|
||||
ctx->radius = r;
|
||||
ctx->scalefactor = sqrt(det);
|
||||
}
|
||||
|
||||
GraphicsInfo *initCairo(int screen, int mask, int width, int height, const char *name)
|
||||
{
|
||||
GraphicsInfo *info = malloc(sizeof(GraphicsInfo));
|
||||
DrawingContext *ctx = malloc(sizeof(DrawingContext));
|
||||
info->context = ctx;
|
||||
DimensionsInfo *dim = malloc(sizeof(DimensionsInfo));
|
||||
info->dim = dim;
|
||||
|
||||
mask |= StructureNotifyMask | ExposureMask | KeyPressMask | ButtonPressMask | PointerMotionMask;
|
||||
|
||||
@ -65,10 +48,11 @@ GraphicsInfo *initCairo(int screen, int mask, int width, int height, const char
|
||||
int stride = cairo_format_stride_for_width(CAIRO_FORMAT_ARGB32, width);
|
||||
info->buffer = malloc(stride*height);
|
||||
info->buffer_surface = cairo_image_surface_create_for_data(info->buffer, CAIRO_FORMAT_ARGB32, width, height, stride);
|
||||
info->context->cairo = cairo_create(info->buffer_surface);
|
||||
cairo_matrix_init_identity(&info->context->matrix);
|
||||
info->context->width = width;
|
||||
info->context->height = height;
|
||||
info->buffer_context = cairo_create(info->buffer_surface);
|
||||
cairo_matrix_init_identity(&info->dim->matrix);
|
||||
info->dim->width = width;
|
||||
info->dim->height = height;
|
||||
updateDimensions(info->dim);
|
||||
|
||||
info->wm_delete_window = XInternAtom(info->display, "WM_DELETE_WINDOW", 0);
|
||||
info->wm_protocols = XInternAtom(info->display, "WM_PROTOCOLS", 0);
|
||||
@ -81,7 +65,7 @@ GraphicsInfo *initCairo(int screen, int mask, int width, int height, const char
|
||||
|
||||
void destroyCairo(GraphicsInfo *info)
|
||||
{
|
||||
cairo_destroy(info->context->cairo);
|
||||
cairo_destroy(info->buffer_context);
|
||||
cairo_destroy(info->front_context);
|
||||
cairo_surface_destroy(info->surface);
|
||||
cairo_surface_destroy(info->buffer_surface);
|
||||
@ -89,7 +73,7 @@ void destroyCairo(GraphicsInfo *info)
|
||||
XDestroyWindow(info->display, info->win);
|
||||
XFreeColormap(info->display, info->cmap);
|
||||
XCloseDisplay(info->display);
|
||||
free(info->context);
|
||||
free(info->dim);
|
||||
free(info);
|
||||
}
|
||||
|
||||
@ -119,7 +103,7 @@ void waitUpdateTimer(GraphicsInfo *info)
|
||||
info->frames++;
|
||||
}
|
||||
|
||||
int processStandardEvent(GraphicsInfo *info, XEvent *ev, void (*draw)(DrawingContext *))
|
||||
int processStandardEvent(GraphicsInfo *info, XEvent *ev, void (*draw)(void *))
|
||||
{
|
||||
int state;
|
||||
static int last_x, last_y;
|
||||
@ -133,17 +117,18 @@ int processStandardEvent(GraphicsInfo *info, XEvent *ev, void (*draw)(DrawingCon
|
||||
|
||||
case ConfigureNotify:
|
||||
printf("ConfigureNotify Event, new dimensions: %d %d %d %d\n", ev->xconfigure.x, ev->xconfigure.y, ev->xconfigure.width, ev->xconfigure.height);
|
||||
info->context->width = ev->xconfigure.width;
|
||||
info->context->height = ev->xconfigure.height;
|
||||
cairo_xlib_surface_set_size(info->surface, info->context->width, info->context->height);
|
||||
info->dim->width = ev->xconfigure.width;
|
||||
info->dim->height = ev->xconfigure.height;
|
||||
updateDimensions(info->dim);
|
||||
cairo_xlib_surface_set_size(info->surface, info->dim->width, info->dim->height);
|
||||
|
||||
cairo_destroy(info->context->cairo);
|
||||
cairo_destroy(info->buffer_context);
|
||||
cairo_surface_destroy(info->buffer_surface);
|
||||
free(info->buffer);
|
||||
stride = cairo_format_stride_for_width(CAIRO_FORMAT_ARGB32, info->context->width);
|
||||
info->buffer = malloc(stride*info->context->height);
|
||||
info->buffer_surface = cairo_image_surface_create_for_data(info->buffer, CAIRO_FORMAT_ARGB32, info->context->width, info->context->height, stride);
|
||||
info->context->cairo = cairo_create(info->buffer_surface);
|
||||
stride = cairo_format_stride_for_width(CAIRO_FORMAT_ARGB32, info->dim->width);
|
||||
info->buffer = malloc(stride*info->dim->height);
|
||||
info->buffer_surface = cairo_image_surface_create_for_data(info->buffer, CAIRO_FORMAT_ARGB32, info->dim->width, info->dim->height, stride);
|
||||
info->buffer_context = cairo_create(info->buffer_surface);
|
||||
|
||||
return STATUS_REDRAW;
|
||||
|
||||
@ -160,7 +145,7 @@ int processStandardEvent(GraphicsInfo *info, XEvent *ev, void (*draw)(DrawingCon
|
||||
cairo_matrix_translate(&transform, ev->xbutton.x, ev->xbutton.y);
|
||||
cairo_matrix_scale(&transform, 5.0/4.0, 5.0/4.0);
|
||||
cairo_matrix_translate(&transform, -ev->xbutton.x, -ev->xbutton.y);
|
||||
cairo_matrix_multiply(&info->context->matrix, &info->context->matrix, &transform);
|
||||
cairo_matrix_multiply(&info->dim->matrix, &info->dim->matrix, &transform);
|
||||
status = STATUS_REDRAW;
|
||||
} else if(ev->xbutton.button == 5) {
|
||||
cairo_matrix_t transform;
|
||||
@ -168,12 +153,13 @@ int processStandardEvent(GraphicsInfo *info, XEvent *ev, void (*draw)(DrawingCon
|
||||
cairo_matrix_translate(&transform, ev->xbutton.x, ev->xbutton.y);
|
||||
cairo_matrix_scale(&transform, 4.0/5.0, 4.0/5.0);
|
||||
cairo_matrix_translate(&transform, -ev->xbutton.x, -ev->xbutton.y);
|
||||
cairo_matrix_multiply(&info->context->matrix, &info->context->matrix, &transform);
|
||||
cairo_matrix_multiply(&info->dim->matrix, &info->dim->matrix, &transform);
|
||||
status = STATUS_REDRAW;
|
||||
}
|
||||
|
||||
last_x = ev->xbutton.x;
|
||||
last_y = ev->xbutton.y;
|
||||
updateDimensions(info->dim);
|
||||
return status;
|
||||
|
||||
case MotionNotify:
|
||||
@ -184,7 +170,7 @@ int processStandardEvent(GraphicsInfo *info, XEvent *ev, void (*draw)(DrawingCon
|
||||
cairo_matrix_t transform;
|
||||
cairo_matrix_init_identity(&transform);
|
||||
cairo_matrix_translate(&transform, dx, dy);
|
||||
cairo_matrix_multiply(&info->context->matrix, &info->context->matrix, &transform);
|
||||
cairo_matrix_multiply(&info->dim->matrix, &info->dim->matrix, &transform);
|
||||
status = STATUS_REDRAW;
|
||||
} else if(ev->xmotion.state & Button1Mask && ev->xmotion.state & ShiftMask) {
|
||||
double width = (double) cairo_xlib_surface_get_width(info->surface);
|
||||
@ -199,7 +185,7 @@ int processStandardEvent(GraphicsInfo *info, XEvent *ev, void (*draw)(DrawingCon
|
||||
cairo_matrix_translate(&transform, width/2, height/2);
|
||||
cairo_matrix_rotate(&transform, angle);
|
||||
cairo_matrix_translate(&transform, -width/2, -height/2);
|
||||
cairo_matrix_multiply(&info->context->matrix, &info->context->matrix, &transform);
|
||||
cairo_matrix_multiply(&info->dim->matrix, &info->dim->matrix, &transform);
|
||||
status = STATUS_REDRAW;
|
||||
}
|
||||
|
||||
@ -219,7 +205,7 @@ int processStandardEvent(GraphicsInfo *info, XEvent *ev, void (*draw)(DrawingCon
|
||||
return STATUS_NOTHING;
|
||||
}
|
||||
|
||||
int checkEvents(GraphicsInfo *info, int (*process)(GraphicsInfo*, XEvent*), void (*draw)(DrawingContext*)) // get any events from the queue and the server, process them if neccessary, quit if wanted
|
||||
int checkEvents(GraphicsInfo *info, int (*process)(GraphicsInfo*, XEvent*), void (*draw)(void *)) // get any events from the queue and the server, process them if neccessary, quit if wanted
|
||||
{
|
||||
XEvent ev;
|
||||
int x11_fd;
|
||||
@ -264,3 +250,20 @@ int checkEvents(GraphicsInfo *info, int (*process)(GraphicsInfo*, XEvent*), void
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
// this computes center, radius and scalefactor out of ctx->matrix
|
||||
void updateDimensions(DimensionsInfo *dim)
|
||||
{
|
||||
double det = dim->matrix.xx * dim->matrix.yy - dim->matrix.xy * dim->matrix.yx;
|
||||
double cx = (double)dim->width/2;
|
||||
double cy = (double)dim->height/2;
|
||||
double r = 2*sqrt((cx*cx + cy*cy)/det); // this is not safe anymore if we have non-uniform scaling
|
||||
|
||||
// don't use cairo_device_to_user() since the matrix might not be our CTM yet
|
||||
cx -= dim->matrix.x0;
|
||||
cy -= dim->matrix.y0;
|
||||
dim->center_x = ( dim->matrix.yy * cx - dim->matrix.xy * cy) / det;
|
||||
dim->center_y = (- dim->matrix.yx * cx + dim->matrix.xx * cy) / det;
|
||||
dim->radius = r;
|
||||
dim->scalefactor = sqrt(det);
|
||||
}
|
||||
|
10
initcairo.h
10
initcairo.h
@ -17,7 +17,6 @@
|
||||
#define STATUS_QUIT 2
|
||||
|
||||
typedef struct {
|
||||
cairo_t *cairo;
|
||||
cairo_matrix_t matrix;
|
||||
unsigned int width;
|
||||
unsigned int height;
|
||||
@ -27,10 +26,9 @@ typedef struct {
|
||||
double center_x;
|
||||
double center_y;
|
||||
double radius;
|
||||
} DrawingContext;
|
||||
} DimensionsInfo;
|
||||
|
||||
typedef struct {
|
||||
DrawingContext *context;
|
||||
Display *display;
|
||||
Window win;
|
||||
Colormap cmap;
|
||||
@ -40,11 +38,13 @@ typedef struct {
|
||||
cairo_t *front_context;
|
||||
|
||||
cairo_surface_t *buffer_surface;
|
||||
cairo_t *buffer_context;
|
||||
unsigned char *buffer;
|
||||
|
||||
struct timeval start_time;
|
||||
unsigned long frames;
|
||||
double elapsed, frametime;
|
||||
DimensionsInfo *dim;
|
||||
} GraphicsInfo;
|
||||
|
||||
GraphicsInfo *initCairo(int screen, int mask, int width, int height, const char *name);
|
||||
@ -52,7 +52,7 @@ void destroyCairo(GraphicsInfo *info);
|
||||
|
||||
void startTimer(GraphicsInfo *info);
|
||||
void waitUpdateTimer(GraphicsInfo *info);
|
||||
int checkEvents(GraphicsInfo *info, int (*process)(GraphicsInfo*, XEvent*), void (*draw)(DrawingContext *));
|
||||
void updateDimensions(DrawingContext *ctx);
|
||||
int checkEvents(GraphicsInfo *info, int (*process)(GraphicsInfo*, XEvent*), void (*draw)(void *));
|
||||
void updateDimensions(DimensionsInfo *ctx);
|
||||
|
||||
#endif
|
||||
|
711
limit_set.c
711
limit_set.c
@ -1,59 +1,9 @@
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
#include <sys/time.h>
|
||||
#include <cairo/cairo-pdf.h>
|
||||
#include <X11/XKBlib.h>
|
||||
#include "main.h"
|
||||
|
||||
#include "initcairo.h"
|
||||
#include "triangle.h"
|
||||
#include "linalg.h"
|
||||
|
||||
#define LOOP(i) for(int i = 0; i < 3; i++)
|
||||
|
||||
typedef struct {
|
||||
double x;
|
||||
double y;
|
||||
} point_t;
|
||||
|
||||
void cartanMatrix(gsl_matrix *cartan, double a1, double a2, double a3, double s);
|
||||
void initializeTriangleGenerators(gsl_matrix **gen, gsl_matrix *cartan);
|
||||
point_t intersect(point_t a, point_t b, point_t c, point_t d);
|
||||
void drawPoint(DrawingContext *ctx, point_t p);
|
||||
void drawSegment(DrawingContext *ctx, point_t a, point_t b);
|
||||
void drawLine(DrawingContext *ctx, point_t a, point_t b);
|
||||
void drawImplicitLine(DrawingContext *ctx, double a, double b, double c);
|
||||
void drawPolygon(DrawingContext *ctx, int sides, ...);
|
||||
void drawAttractorConnection(DrawingContext *ctx, const char *word1, const char *word2);
|
||||
void drawBox(DrawingContext *ctx, const char *word1, const char *word2);
|
||||
void drawBoxStd(DrawingContext *ctx, const char *word, char base);
|
||||
int compareAngle(const void *x, const void *y);
|
||||
int computeLimitCurve();
|
||||
void drawBoxes(DrawingContext *ctx);
|
||||
void drawReflectors(DrawingContext *ctx);
|
||||
void drawAttractors(DrawingContext *ctx);
|
||||
void draw(DrawingContext *ctx);
|
||||
void setup();
|
||||
void destroy();
|
||||
void print(DrawingContext *screen);
|
||||
int processEvent(GraphicsInfo *info, XEvent *ev);
|
||||
|
||||
double parameter;
|
||||
int n_group_elements;
|
||||
double *limit_curve; // x, y, angle triples
|
||||
int limit_curve_valid = 0;
|
||||
groupelement_t *group;
|
||||
workspace_t *ws;
|
||||
gsl_matrix *gen[3];
|
||||
gsl_matrix **matrices;
|
||||
gsl_matrix *cartan, *cob, *coxeter, *coxeter_fixedpoints, *fixedpoints;
|
||||
|
||||
int show_boxes = 0;
|
||||
int show_attractors = 0;
|
||||
int show_reflectors = 0;
|
||||
int show_limit = 1;
|
||||
int limit_with_lines = 1;
|
||||
int use_repelling = 1;
|
||||
static int compareAngle(const void *x, const void *y)
|
||||
{
|
||||
return ((double*)x)[2] > ((double*)y)[2] ? 1 : -1;
|
||||
}
|
||||
|
||||
void cartanMatrix(gsl_matrix *cartan, double a1, double a2, double a3, double s)
|
||||
{
|
||||
@ -76,622 +26,73 @@ void initializeTriangleGenerators(gsl_matrix **gen, gsl_matrix *cartan)
|
||||
LOOP(i) LOOP(j) *gsl_matrix_ptr(gen[i], i, j) += gsl_matrix_get(cartan, i, j);
|
||||
}
|
||||
|
||||
// intersect the lines a-b and c-d
|
||||
point_t intersect(point_t a, point_t b, point_t c, point_t d)
|
||||
int computeLimitCurve(DrawingContext *ctx)
|
||||
{
|
||||
point_t res;
|
||||
double t = ((c.y-d.y)*(c.x-a.x) - (c.x-d.x)*(c.y-a.y)) / ((b.x-a.x)*(c.y-d.y) - (b.y-a.y)*(c.x-d.x));
|
||||
res.x = (1-t)*a.x + t*b.x;
|
||||
res.y = (1-t)*a.y + t*b.y;
|
||||
return res;
|
||||
}
|
||||
workspace_t *ws = ctx->ws;
|
||||
gsl_matrix *cartan_pos = getTempMatrix(ctx);
|
||||
gsl_matrix *cob_pos = getTempMatrix(ctx);
|
||||
gsl_matrix *coxeter_pos = getTempMatrix(ctx);
|
||||
gsl_matrix *coxeter_fixedpoints_pos = getTempMatrix(ctx);
|
||||
gsl_matrix *fixedpoints_pos = getTempMatrix(ctx);
|
||||
gsl_matrix *coxeter = getTempMatrix(ctx);
|
||||
gsl_matrix *coxeter_fixedpoints = getTempMatrix(ctx);
|
||||
gsl_matrix *fixedpoints = getTempMatrix(ctx);
|
||||
gsl_matrix **gen = getTempMatrices(ctx, 3);
|
||||
gsl_matrix **elements = getTempMatrices(ctx, ctx->n_group_elements);
|
||||
groupelement_t *group = ctx->group;
|
||||
int success = 0;
|
||||
|
||||
void drawPoint(DrawingContext *ctx, point_t p)
|
||||
{
|
||||
cairo_t *C = ctx->cairo;
|
||||
int column = ctx->use_repelling ? 2 : 0;
|
||||
ctx->limit_curve_valid = 0;
|
||||
|
||||
cairo_save(C);
|
||||
cairo_move_to(C, p.x, p.y);
|
||||
cairo_close_path(C);
|
||||
cairo_set_line_cap(C, CAIRO_LINE_CAP_ROUND);
|
||||
cairo_set_line_width(C, 10.0/ctx->scalefactor);
|
||||
cairo_stroke(C);
|
||||
cairo_restore(C);
|
||||
}
|
||||
// do first in the Fuchsian positive case to get the angles
|
||||
cartanMatrix(cartan_pos, M_PI/ctx->p[0], M_PI/ctx->p[1], M_PI/ctx->p[2], 1.0);
|
||||
initializeTriangleGenerators(gen, cartan_pos);
|
||||
gsl_matrix_set_identity(elements[0]);
|
||||
for(int i = 1; i < ctx->n_group_elements; i++)
|
||||
multiply(elements[group[i].parent->id], gen[group[i].letter], elements[i]);
|
||||
diagonalize_symmetric_form(cartan_pos, cob_pos, ws);
|
||||
multiply_many(ws, coxeter_pos, 3, gen[0], gen[1], gen[2]);
|
||||
int ev_count_pos = real_eigenvectors(coxeter_pos, coxeter_fixedpoints_pos, ws);
|
||||
|
||||
void drawSegment(DrawingContext *ctx, point_t a, point_t b)
|
||||
{
|
||||
cairo_t *C = ctx->cairo;
|
||||
cairo_move_to(C, a.x, a.y);
|
||||
cairo_line_to(C, b.x, b.y);
|
||||
cairo_stroke(C);
|
||||
}
|
||||
if(ev_count_pos != 3)
|
||||
goto error_out;
|
||||
|
||||
void drawLine(DrawingContext *ctx, point_t a, point_t b)
|
||||
{
|
||||
// not implemented
|
||||
point_t c, xplus, xminus;
|
||||
double normb;
|
||||
double scalbc;
|
||||
|
||||
c.x = ctx->center_x;
|
||||
c.y = ctx->center_y;
|
||||
b.x -= a.x;
|
||||
b.y -= a.y;
|
||||
c.x -= a.x;
|
||||
c.y -= a.y;
|
||||
normb = sqrt(b.x*b.x + b.y*b.y);
|
||||
b.x /= normb;
|
||||
b.y /= normb;
|
||||
scalbc = b.x*c.x + b.y*c.y;
|
||||
xplus.x = a.x + (scalbc + ctx->radius)*b.x;
|
||||
xplus.y = a.y + (scalbc + ctx->radius)*b.y;
|
||||
xminus.x = a.x + (scalbc - ctx->radius)*b.x;
|
||||
xminus.y = a.y + (scalbc - ctx->radius)*b.y;
|
||||
|
||||
drawSegment(ctx, xminus, xplus);
|
||||
}
|
||||
|
||||
void drawImplicitLine(DrawingContext *ctx, double a, double b, double c)
|
||||
{
|
||||
// not implemented
|
||||
double norm, lambda;
|
||||
point_t m, s, xminus, xplus;
|
||||
m.x = ctx->center_x;
|
||||
m.y = ctx->center_y;
|
||||
lambda = (a*m.x + b*m.y + c)/(a*a + b*b);
|
||||
s.x = m.x - lambda*a;
|
||||
s.y = m.y - lambda*b;
|
||||
norm = sqrt(a*a + b*b);
|
||||
xminus.x = s.x - ctx->radius * b / norm;
|
||||
xminus.y = s.y + ctx->radius * a / norm;
|
||||
xplus.x = s.x + ctx->radius * b / norm;
|
||||
xplus.y = s.y - ctx->radius * a / norm;
|
||||
|
||||
drawSegment(ctx, xminus, xplus);
|
||||
}
|
||||
|
||||
void drawPolygon(DrawingContext *ctx, int sides, ...)
|
||||
{
|
||||
va_list args;
|
||||
point_t first, prev, current;
|
||||
|
||||
va_start(args, sides);
|
||||
|
||||
first = va_arg(args, point_t);
|
||||
current = first;
|
||||
for(int i = 0; i < sides-1; i++) {
|
||||
prev = current;
|
||||
current = va_arg(args, point_t);
|
||||
drawSegment(ctx, prev, current);
|
||||
}
|
||||
drawSegment(ctx, current, first);
|
||||
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
int fixedPoints(const char *word, point_t *out)
|
||||
{
|
||||
gsl_matrix *tmp = ws->stack[10];
|
||||
gsl_matrix *ev = ws->stack[11];
|
||||
|
||||
gsl_matrix_set_identity(tmp);
|
||||
for(int i = 0; i < strlen(word); i++) {
|
||||
if(word[i] == ' ')
|
||||
continue;
|
||||
multiply_right(tmp, gen[word[i]-'a'], ws);
|
||||
}
|
||||
int count = real_eigenvectors(tmp, ev, ws);
|
||||
multiply_left(cob, ev, ws);
|
||||
|
||||
LOOP(i) out[i].x = gsl_matrix_get(ev, 0, i) / gsl_matrix_get(ev, 2, i);
|
||||
LOOP(i) out[i].y = gsl_matrix_get(ev, 1, i) / gsl_matrix_get(ev, 2, i);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
void drawAttractorConnection(DrawingContext *ctx, const char *word1, const char *word2)
|
||||
{
|
||||
point_t p1[3], p2[3];
|
||||
|
||||
fixedPoints(word1, p1);
|
||||
fixedPoints(word2, p2);
|
||||
|
||||
drawSegment(ctx, p1[0], p2[0]);
|
||||
}
|
||||
|
||||
void drawTriangle(DrawingContext *ctx, const char *word)
|
||||
{
|
||||
point_t p[3];
|
||||
|
||||
fixedPoints(word, p);
|
||||
drawPolygon(ctx, 3, p[0], p[1], p[2]);
|
||||
}
|
||||
|
||||
void drawBox(DrawingContext *ctx, const char *word1, const char *word2)
|
||||
{
|
||||
point_t p[2][3],i[2];
|
||||
|
||||
fixedPoints(word1, p[0]);
|
||||
fixedPoints(word2, p[1]);
|
||||
|
||||
// intersect attracting line with neutral line of the other element
|
||||
for(int j = 0; j < 2; j++)
|
||||
i[j] = intersect(p[j%2][0],p[j%2][1],p[(j+1)%2][0],p[(j+1)%2][2]);
|
||||
|
||||
drawPolygon(ctx, 4, p[0][0], i[0], p[1][0], i[1]);
|
||||
}
|
||||
|
||||
void drawBoxStd(DrawingContext *ctx, const char *word, char base)
|
||||
{
|
||||
char word1[100];
|
||||
char word2[100];
|
||||
|
||||
int len = strlen(word);
|
||||
if(len*2 + 4 > 100)
|
||||
return;
|
||||
|
||||
for(int i = 0; i < len; i++) {
|
||||
word1[i] = word1[2*len+2-i] = word[i];
|
||||
word2[i] = word2[2*len+2-i] = word[i];
|
||||
}
|
||||
word1[2*len+3] = 0;
|
||||
word2[2*len+3] = 0;
|
||||
|
||||
LOOP(i) word1[len+i] = (base-'A'+6+i+1)%3+'a';
|
||||
LOOP(i) word2[len+i] = (base-'A'+6-i-1)%3+'a';
|
||||
|
||||
// printf("Words: %s %s\n", word1, word2);
|
||||
|
||||
drawBox(ctx, word1, word2);
|
||||
}
|
||||
|
||||
int compareAngle(const void *x, const void *y)
|
||||
{
|
||||
return ((double*)x)[2] > ((double*)y)[2] ? 1 : -1;
|
||||
}
|
||||
|
||||
int computeLimitCurve()
|
||||
{
|
||||
int p = 5, q = 5, r = 5;
|
||||
int k = 2, l = 2, m = 2;
|
||||
|
||||
int column = use_repelling ? 2 : 0;
|
||||
|
||||
generate_triangle_group(group, n_group_elements, p, q, r);
|
||||
|
||||
// do first in the Fuchsian case to get the angles
|
||||
cartanMatrix(cartan, M_PI/p, M_PI/q, M_PI/r, 1.0);
|
||||
initializeTriangleGenerators(gen, cartan);
|
||||
gsl_matrix_set_identity(matrices[0]);
|
||||
for(int i = 1; i < n_group_elements; i++)
|
||||
multiply(matrices[group[i].parent->id], gen[group[i].letter], matrices[i]);
|
||||
diagonalize_symmetric_form(cartan, cob, ws);
|
||||
multiply_many(ws, coxeter, 3, gen[0], gen[1], gen[2]);
|
||||
int ev_count_fuchsian = real_eigenvectors(coxeter, coxeter_fixedpoints, ws);
|
||||
|
||||
if(ev_count_fuchsian != 3)
|
||||
return 0;
|
||||
|
||||
for(int i = 0; i < n_group_elements; i++) {
|
||||
multiply_many(ws, fixedpoints, 3, cob, matrices[i], coxeter_fixedpoints);
|
||||
limit_curve[3*i+2] = atan2(
|
||||
gsl_matrix_get(fixedpoints, 0, column)/gsl_matrix_get(fixedpoints, 2, column),
|
||||
gsl_matrix_get(fixedpoints, 1, column)/gsl_matrix_get(fixedpoints, 2, column));
|
||||
for(int i = 0; i < ctx->n_group_elements; i++) {
|
||||
multiply_many(ws, fixedpoints_pos, 3, cob_pos, elements[i], coxeter_fixedpoints_pos);
|
||||
ctx->limit_curve[3*i+2] = atan2(
|
||||
gsl_matrix_get(fixedpoints_pos, 0, column)/gsl_matrix_get(fixedpoints_pos, 2, column),
|
||||
gsl_matrix_get(fixedpoints_pos, 1, column)/gsl_matrix_get(fixedpoints_pos, 2, column));
|
||||
}
|
||||
|
||||
// now to it again to calculate x and y coordinates
|
||||
cartanMatrix(cartan, M_PI*k/p, M_PI*l/q, M_PI*m/r, parameter);
|
||||
initializeTriangleGenerators(gen, cartan);
|
||||
gsl_matrix_set_identity(matrices[0]);
|
||||
for(int i = 1; i < n_group_elements; i++)
|
||||
multiply(matrices[group[i].parent->id], gen[group[i].letter], matrices[i]);
|
||||
gsl_matrix_memcpy(cob, cartan); // is this a good choice of basis
|
||||
// gsl_matrix_set_identity(cob);
|
||||
// now do it again to calculate x and y coordinates
|
||||
initializeTriangleGenerators(gen, ctx->cartan);
|
||||
gsl_matrix_set_identity(elements[0]);
|
||||
for(int i = 1; i < ctx->n_group_elements; i++)
|
||||
multiply(elements[group[i].parent->id], gen[group[i].letter], elements[i]);
|
||||
multiply_many(ws, coxeter, 3, gen[0], gen[1], gen[2]);
|
||||
int ev_count = real_eigenvectors(coxeter, coxeter_fixedpoints, ws);
|
||||
|
||||
if(ev_count == 1)
|
||||
column = 0;
|
||||
if(ev_count == 0)
|
||||
return 0;
|
||||
goto error_out;
|
||||
|
||||
for(int i = 0; i < n_group_elements; i++) {
|
||||
multiply_many(ws, fixedpoints, 3, cob, matrices[i], coxeter_fixedpoints);
|
||||
for(int i = 0; i < ctx->n_group_elements; i++) {
|
||||
multiply_many(ws, fixedpoints, 3, ctx->cob, elements[i], coxeter_fixedpoints);
|
||||
|
||||
limit_curve[3*i] = gsl_matrix_get(fixedpoints, 0, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
limit_curve[3*i+1] = gsl_matrix_get(fixedpoints, 1, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
ctx->limit_curve[3*i ] = gsl_matrix_get(fixedpoints, 0, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
ctx->limit_curve[3*i+1] = gsl_matrix_get(fixedpoints, 1, column)/gsl_matrix_get(fixedpoints, 2, column);
|
||||
}
|
||||
|
||||
qsort(limit_curve, n_group_elements, 3*sizeof(double), compareAngle);
|
||||
qsort(ctx->limit_curve, ctx->n_group_elements, 3*sizeof(double), compareAngle);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void drawBoxes(DrawingContext *ctx)
|
||||
{
|
||||
cairo_t *C = ctx->cairo;
|
||||
|
||||
cairo_set_source_rgb(C, 1, 0, 0);
|
||||
drawTriangle(ctx, "abc");
|
||||
cairo_set_source_rgb(C, 0, 0, 1);
|
||||
drawTriangle(ctx, "aca abc aca");
|
||||
drawTriangle(ctx, "acac abc caca");
|
||||
drawTriangle(ctx, "acaca abc acaca");
|
||||
cairo_set_source_rgb(C, 0, 0.8, 0);
|
||||
drawTriangle(ctx, "cac abc cac");
|
||||
drawTriangle(ctx, "caca abc acac");
|
||||
drawTriangle(ctx, "cacac abc cacac");
|
||||
|
||||
/*
|
||||
cairo_set_source_rgb(C, 1, 0, 0);
|
||||
drawBoxStd(ctx, "c", 'C');
|
||||
drawBoxStd(ctx, "", 'B');
|
||||
drawBoxStd(ctx, "a", 'A');
|
||||
drawBoxStd(ctx, "", 'C');
|
||||
drawBoxStd(ctx, "b", 'B');
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0, 0);
|
||||
drawBoxStd(ctx, "ca", 'A');
|
||||
drawBoxStd(ctx, "cac", 'C');
|
||||
drawBoxStd(ctx, "caca", 'A');
|
||||
drawBoxStd(ctx, "acac", 'C');
|
||||
drawBoxStd(ctx, "aca", 'A');
|
||||
drawBoxStd(ctx, "ac", 'C');
|
||||
|
||||
drawBoxStd(ctx, "aca cb", 'B');
|
||||
drawBoxStd(ctx, "aca cbc", 'C');
|
||||
drawBoxStd(ctx, "aca cbcb", 'B');
|
||||
drawBoxStd(ctx, "aca bcbc", 'C');
|
||||
drawBoxStd(ctx, "aca bcb", 'B');
|
||||
drawBoxStd(ctx, "aca bc", 'C');
|
||||
|
||||
drawBoxStd(ctx, "caca cb", 'B');
|
||||
drawBoxStd(ctx, "caca cbc", 'C');
|
||||
drawBoxStd(ctx, "caca cbcb", 'B');
|
||||
drawBoxStd(ctx, "caca bcbc", 'C');
|
||||
drawBoxStd(ctx, "caca bcb", 'B');
|
||||
drawBoxStd(ctx, "caca bc", 'C');
|
||||
|
||||
cairo_set_source_rgb(C, 1, 0, 1);
|
||||
drawBoxStd(ctx, "ca bc", 'C');
|
||||
drawBoxStd(ctx, "ca bcb", 'B');
|
||||
drawBoxStd(ctx, "ca bcbc", 'C');
|
||||
drawBoxStd(ctx, "ca cbcb", 'B');
|
||||
drawBoxStd(ctx, "ca cbc", 'C');
|
||||
drawBoxStd(ctx, "ca cb", 'B');
|
||||
|
||||
cairo_set_source_rgb(C, 0, 1, 0);
|
||||
// drawBoxStd(ctx, "ca bc", 'C');
|
||||
drawBoxStd(ctx, "cabc ba", 'A');
|
||||
drawBoxStd(ctx, "cabc bab", 'B');
|
||||
drawBoxStd(ctx, "cabc baba", 'A');
|
||||
drawBoxStd(ctx, "cabc abab", 'B');
|
||||
drawBoxStd(ctx, "cabc aba", 'A');
|
||||
drawBoxStd(ctx, "cabc ab", 'B');
|
||||
*/
|
||||
}
|
||||
|
||||
void drawReflectors(DrawingContext *ctx)
|
||||
{
|
||||
gsl_matrix *tmp = ws->stack[10];
|
||||
gsl_matrix *tmp2 = ws->stack[11];
|
||||
point_t p[3];
|
||||
|
||||
// points
|
||||
cairo_set_source_rgb(ctx->cairo, 0, 0, 0);
|
||||
LOOP(i) p[i].x = gsl_matrix_get(cob, 0, i) / gsl_matrix_get(cob, 2, i);
|
||||
LOOP(i) p[i].y = gsl_matrix_get(cob, 1, i) / gsl_matrix_get(cob, 2, i);
|
||||
LOOP(i) drawPoint(ctx, p[i]);
|
||||
|
||||
// lines
|
||||
invert(cob, tmp2, ws);
|
||||
multiply(cartan, tmp2, tmp);
|
||||
LOOP(i) drawImplicitLine(ctx, gsl_matrix_get(tmp, i, 0), gsl_matrix_get(tmp, i, 1), gsl_matrix_get(tmp, i, 2));
|
||||
}
|
||||
|
||||
void drawAttractors(DrawingContext *ctx)
|
||||
{
|
||||
point_t p[3][3];
|
||||
|
||||
fixedPoints("abc", p[0]);
|
||||
fixedPoints("bca", p[1]);
|
||||
fixedPoints("cab", p[2]);
|
||||
|
||||
double color[3][3] = {{1,0,0},{0,0.7,0},{0,0,1}};
|
||||
|
||||
LOOP(i) LOOP(j) {
|
||||
cairo_set_source_rgb(ctx->cairo, color[i][0], color[i][1], color[i][2]);
|
||||
drawPoint(ctx, p[i][j]);
|
||||
}
|
||||
|
||||
LOOP(i) LOOP(j) {
|
||||
cairo_set_source_rgb(ctx->cairo, color[i][0], color[i][1], color[i][2]);
|
||||
drawLine(ctx, p[i][j], p[i][(j+1)%3]);
|
||||
}
|
||||
}
|
||||
|
||||
void draw(DrawingContext *ctx)
|
||||
{
|
||||
cairo_t *C = ctx->cairo;
|
||||
|
||||
cairo_set_source_rgb(C, 1, 1, 1);
|
||||
cairo_paint(C);
|
||||
|
||||
cairo_set_matrix(C, &ctx->matrix);
|
||||
|
||||
// defaults; use save/restore whenever these are changed
|
||||
cairo_set_line_width(C, 1.0/ctx->scalefactor);
|
||||
cairo_set_font_size(C, 16);
|
||||
cairo_set_line_join(C, CAIRO_LINE_JOIN_BEVEL);
|
||||
cairo_set_line_cap(C, CAIRO_LINE_CAP_ROUND);
|
||||
|
||||
if(limit_curve_valid) {
|
||||
if(show_limit) {
|
||||
cairo_save(C);
|
||||
|
||||
int previous_inside = 0;
|
||||
for(int i = 0; i < n_group_elements; i++) {
|
||||
double x = limit_curve[3*i];
|
||||
double y = limit_curve[3*i+1];
|
||||
|
||||
cairo_user_to_device(C, &x, &y);
|
||||
|
||||
if(-x < ctx->width && x < 3*ctx->width && -y < ctx->height && y < 3*ctx->height) {
|
||||
if(limit_with_lines) {
|
||||
if(!previous_inside)
|
||||
cairo_move_to(C, limit_curve[3*i], limit_curve[3*i+1]);
|
||||
else
|
||||
cairo_line_to(C, limit_curve[3*i], limit_curve[3*i+1]);
|
||||
} else {
|
||||
cairo_move_to(C, limit_curve[3*i], limit_curve[3*i+1]);
|
||||
cairo_close_path(C);
|
||||
}
|
||||
previous_inside = 1;
|
||||
} else {
|
||||
previous_inside = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if(!limit_with_lines) { // draw dots instead of lines
|
||||
cairo_set_line_cap(C, CAIRO_LINE_CAP_ROUND);
|
||||
cairo_set_line_width(C, 3.0/ctx->scalefactor);
|
||||
}
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0, 0);
|
||||
cairo_stroke(C);
|
||||
|
||||
cairo_restore(C);
|
||||
}
|
||||
|
||||
if(show_boxes)
|
||||
drawBoxes(ctx);
|
||||
|
||||
if(show_attractors)
|
||||
drawAttractors(ctx);
|
||||
|
||||
if(show_reflectors)
|
||||
drawReflectors(ctx);
|
||||
}
|
||||
|
||||
cairo_identity_matrix(C);
|
||||
|
||||
cairo_move_to(C, 15, 30);
|
||||
cairo_set_source_rgb(C, 0, 0, 0);
|
||||
char buf[100];
|
||||
sprintf(buf, "t = exp(%.8f) = %.8f", log(parameter), parameter);
|
||||
cairo_show_text(C, buf);
|
||||
|
||||
cairo_surface_flush(cairo_get_target(C));
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
n_group_elements = 50000;
|
||||
limit_curve = malloc(3*n_group_elements*sizeof(double));
|
||||
group = malloc(n_group_elements*sizeof(groupelement_t));
|
||||
ws = workspace_alloc(3);
|
||||
|
||||
LOOP(i) gen[i] = gsl_matrix_alloc(3, 3);
|
||||
matrices = malloc(n_group_elements*sizeof(gsl_matrix*));
|
||||
for(int i = 0; i < n_group_elements; i++)
|
||||
matrices[i] = gsl_matrix_alloc(3, 3);
|
||||
cartan = gsl_matrix_alloc(3, 3);
|
||||
cob = gsl_matrix_alloc(3, 3);
|
||||
coxeter = gsl_matrix_alloc(3, 3);
|
||||
coxeter_fixedpoints = gsl_matrix_alloc(3, 3);
|
||||
fixedpoints = gsl_matrix_alloc(3, 3);
|
||||
}
|
||||
|
||||
void destroy()
|
||||
{
|
||||
free(limit_curve);
|
||||
free(group);
|
||||
workspace_free(ws);
|
||||
|
||||
LOOP(i) gsl_matrix_free(gen[i]);
|
||||
for(int i = 0; i < n_group_elements; i++)
|
||||
gsl_matrix_free(matrices[i]);
|
||||
free(matrices);
|
||||
gsl_matrix_free(cartan);
|
||||
gsl_matrix_free(cob);
|
||||
gsl_matrix_free(coxeter);
|
||||
gsl_matrix_free(coxeter_fixedpoints);
|
||||
gsl_matrix_free(fixedpoints);
|
||||
}
|
||||
|
||||
void print(DrawingContext *screen)
|
||||
{
|
||||
DrawingContext file;
|
||||
cairo_surface_t *surface;
|
||||
|
||||
char filename[100];
|
||||
time_t t = time(NULL);
|
||||
strftime(filename, sizeof(filename), "screenshot_%Y%m%d_%H%M%S.pdf", localtime(&t));
|
||||
|
||||
file.width = screen->width;
|
||||
file.height = screen->width / sqrt(2.0);
|
||||
file.matrix = screen->matrix;
|
||||
file.matrix.y0 += ((double)file.height - (double)screen->height) / 2.0; // recenter vertically
|
||||
updateDimensions(&file);
|
||||
|
||||
surface = cairo_pdf_surface_create(filename, (double)file.width, (double)file.height);
|
||||
file.cairo = cairo_create(surface);
|
||||
|
||||
draw(&file);
|
||||
|
||||
cairo_destroy(file.cairo);
|
||||
cairo_surface_destroy(surface);
|
||||
|
||||
printf("Wrote sceenshot to file: %s\n", filename);
|
||||
}
|
||||
|
||||
int processEvent(GraphicsInfo *info, XEvent *ev)
|
||||
{
|
||||
int state;
|
||||
unsigned long key;
|
||||
|
||||
switch(ev->type) {
|
||||
|
||||
case KeyPress:
|
||||
state = ev->xkey.state & (ShiftMask | LockMask | ControlMask);
|
||||
key = XkbKeycodeToKeysym(ev->xkey.display, ev->xkey.keycode, 0, !!(state & ShiftMask));
|
||||
printf("Key pressed: %ld\n", key);
|
||||
|
||||
switch(key) {
|
||||
case XK_Down:
|
||||
parameter /= exp(0.002);
|
||||
limit_curve_valid = computeLimitCurve();
|
||||
break;
|
||||
case XK_Up:
|
||||
parameter *= exp(0.002);
|
||||
limit_curve_valid = computeLimitCurve();
|
||||
break;
|
||||
case XK_Left:
|
||||
parameter /= exp(0.0001);
|
||||
limit_curve_valid = computeLimitCurve();
|
||||
break;
|
||||
case XK_Right:
|
||||
parameter *= exp(0.0001);
|
||||
limit_curve_valid = computeLimitCurve();
|
||||
break;
|
||||
case XK_Page_Down:
|
||||
parameter /= exp(0.2);
|
||||
limit_curve_valid = computeLimitCurve();
|
||||
break;
|
||||
case XK_Page_Up:
|
||||
parameter *= exp(0.2);
|
||||
limit_curve_valid = computeLimitCurve();
|
||||
break;
|
||||
case ' ':
|
||||
parameter = 2.890053638;
|
||||
limit_curve_valid = computeLimitCurve();
|
||||
break;
|
||||
case XK_Return:
|
||||
parameter = 2.76375163;
|
||||
limit_curve_valid = computeLimitCurve();
|
||||
break;
|
||||
case 'm':
|
||||
printf("info->context->matrix.xx = %f;\n", info->context->matrix.xx);
|
||||
printf("info->context->matrix.xy = %f;\n", info->context->matrix.xy);
|
||||
printf("info->context->matrix.x0 = %f;\n", info->context->matrix.x0);
|
||||
printf("info->context->matrix.yx = %f;\n", info->context->matrix.yx);
|
||||
printf("info->context->matrix.yy = %f;\n", info->context->matrix.yy);
|
||||
printf("info->context->matrix.y0 = %f;\n", info->context->matrix.y0);
|
||||
break;
|
||||
case 'b':
|
||||
show_boxes = !show_boxes;
|
||||
break;
|
||||
case 'a':
|
||||
show_attractors = !show_attractors;
|
||||
break;
|
||||
case 'r':
|
||||
show_reflectors = !show_reflectors;
|
||||
break;
|
||||
case 'L':
|
||||
limit_with_lines = !limit_with_lines;
|
||||
break;
|
||||
case 'l':
|
||||
show_limit = !show_limit;
|
||||
break;
|
||||
case 'p':
|
||||
print(info->context);
|
||||
break;
|
||||
case 'f':
|
||||
use_repelling = !use_repelling;
|
||||
limit_curve_valid = computeLimitCurve();
|
||||
}
|
||||
|
||||
return STATUS_REDRAW;
|
||||
}
|
||||
|
||||
return STATUS_NOTHING;
|
||||
}
|
||||
|
||||
int main( |