230 lines
5.3 KiB
Rust
230 lines
5.3 KiB
Rust
use crate::language::{EGraph, EquationLanguage, Rational, RATIONAL_ONE, RATIONAL_ZERO};
|
|
use std::collections::HashMap;
|
|
use egg::Id;
|
|
|
|
#[derive(Debug,Clone)]
|
|
pub enum SpecialTerm {
|
|
Constant(Rational),
|
|
PowerOfX(usize),
|
|
Monomial(usize, Rational),
|
|
MonicNonconstPoly(Vec<Rational>),
|
|
Factorization(Rational, Vec<Vec<Rational>>),
|
|
Other,
|
|
}
|
|
|
|
fn search_for<F, T>(egraph: &EGraph, f: F) -> HashMap<Id, T>
|
|
where
|
|
F: Fn(Id, &EquationLanguage, &HashMap<Id, T>) -> Option<T> {
|
|
|
|
let mut result: HashMap<Id, T> = HashMap::new();
|
|
let mut modifications: usize = 1;
|
|
|
|
while modifications > 0 {
|
|
modifications = 0;
|
|
|
|
for cls in egraph.classes() {
|
|
let id = cls.id;
|
|
if result.contains_key(&id) {
|
|
continue;
|
|
}
|
|
|
|
for node in &cls.nodes {
|
|
if let Some(x) = f(id, node, &result) {
|
|
result.insert(id, x);
|
|
modifications += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
println!("{} modifications!", modifications);
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
pub fn analyze3(egraph: &EGraph, eclass: Id) {
|
|
let constants = search_for(egraph, |id, _, _|
|
|
egraph[id].data.as_ref().map(|c|c.clone())
|
|
);
|
|
|
|
println!("{:?}", constants);
|
|
|
|
let powers_of_x = search_for(egraph, |_, node, matches| match *node {
|
|
EquationLanguage::Unknown => Some(1),
|
|
EquationLanguage::Mul([a,b]) => {
|
|
if !matches.contains_key(&a) || !matches.contains_key(&b) {
|
|
return None;
|
|
}
|
|
|
|
let (dega, degb) = (matches[&a], matches[&b]);
|
|
Some(dega + degb)
|
|
},
|
|
_ => None,
|
|
});
|
|
|
|
println!("{:?}", powers_of_x);
|
|
|
|
let monomials = search_for(egraph, |id, node, _| {
|
|
if let Some(deg) = powers_of_x.get(&id) {
|
|
return Some((*deg, RATIONAL_ONE.clone()));
|
|
}
|
|
|
|
if let Some(c) = constants.get(&id) {
|
|
return Some((0, c.clone()));
|
|
}
|
|
|
|
match *node {
|
|
EquationLanguage::Mul([a,b]) => {
|
|
if !constants.contains_key(&a) || !powers_of_x.contains_key(&b) {
|
|
return None;
|
|
}
|
|
|
|
let (coeff, deg) = (&constants[&a], powers_of_x[&b]);
|
|
Some((deg, coeff.clone()))
|
|
},
|
|
_ => None,
|
|
}
|
|
});
|
|
|
|
println!("{:?}", monomials);
|
|
|
|
let monic_polynomials = search_for(egraph, |id, node, matches| {
|
|
if let Some(deg) = powers_of_x.get(&id) {
|
|
let mut poly: Vec<Rational> = Vec::new();
|
|
poly.resize(*deg, RATIONAL_ZERO);
|
|
poly.push(RATIONAL_ONE.clone());
|
|
Some(poly)
|
|
} else {
|
|
match *node {
|
|
EquationLanguage::Add([a,b]) => {
|
|
if !matches.contains_key(&a) || !monomials.contains_key(&b) {
|
|
return None;
|
|
}
|
|
|
|
let (leading, (deg, coeff)) = (&matches[&a], &monomials[&b]);
|
|
if leading.len() <= *deg || leading[*deg] != RATIONAL_ZERO {
|
|
return None;
|
|
}
|
|
|
|
let mut poly = leading.clone();
|
|
poly[*deg] = coeff.clone();
|
|
Some(poly)
|
|
},
|
|
_ => None,
|
|
}
|
|
}
|
|
});
|
|
|
|
for p in &monic_polynomials {
|
|
println!("{:?}", p);
|
|
}
|
|
|
|
let factorizations: HashMap<Id, (Rational, Vec<Vec<Rational>>)> = search_for(egraph, |id, node, matches| {
|
|
if let Some(c) = constants.get(&id) {
|
|
return Some((c.clone(), vec![]));
|
|
}
|
|
|
|
if let Some(poly) = monic_polynomials.get(&id) {
|
|
return Some((RATIONAL_ONE.clone(), vec![poly.clone()]));
|
|
}
|
|
|
|
match *node {
|
|
EquationLanguage::Mul([a,b]) => {
|
|
if !matches.contains_key(&a) || !monic_polynomials.contains_key(&b) {
|
|
return None;
|
|
}
|
|
|
|
let ((factor, polys), newpoly) = (&matches[&a], &monic_polynomials[&b]);
|
|
|
|
let mut combined: Vec<Vec<Rational>> = polys.clone();
|
|
combined.push(newpoly.clone());
|
|
Some((factor.clone(), combined))
|
|
},
|
|
_ => None,
|
|
}
|
|
});
|
|
|
|
/*
|
|
for p in &factorizations {
|
|
println!("{:?}", p);
|
|
}
|
|
*/
|
|
|
|
println!("{:?}", factorizations[&eclass]);
|
|
}
|
|
|
|
pub fn analyze2(egraph: &EGraph) -> HashMap<Id, SpecialTerm> {
|
|
let mut types: HashMap<Id, SpecialTerm> = HashMap::new();
|
|
|
|
let mut modifications: usize = 1;
|
|
|
|
while modifications > 0 {
|
|
modifications = 0;
|
|
|
|
for cls in egraph.classes() {
|
|
let id = cls.id;
|
|
if types.contains_key(&id) {
|
|
continue;
|
|
}
|
|
|
|
if let Some(c) = &egraph[id].data {
|
|
types.insert(id, SpecialTerm::Constant(c.clone()));
|
|
modifications += 1;
|
|
continue;
|
|
}
|
|
|
|
for node in &cls.nodes {
|
|
match *node {
|
|
EquationLanguage::Unknown => {
|
|
types.insert(id, SpecialTerm::PowerOfX(1));
|
|
modifications += 1;
|
|
},
|
|
EquationLanguage::Mul([a,b]) => {
|
|
// as we don't know a and b yet, defer to future iteration
|
|
if !types.contains_key(&a) || !types.contains_key(&b) {
|
|
continue;
|
|
}
|
|
|
|
match (&types[&a], &types[&b]) {
|
|
(SpecialTerm::PowerOfX(dega), SpecialTerm::PowerOfX(degb)) => {
|
|
types.insert(id, SpecialTerm::PowerOfX(*dega + *degb));
|
|
modifications += 1;
|
|
},
|
|
(SpecialTerm::Constant(coeff), SpecialTerm::PowerOfX(deg)) => {
|
|
types.insert(id, SpecialTerm::Monomial(*deg, coeff.clone()));
|
|
modifications += 1;
|
|
},
|
|
_ => { },
|
|
}
|
|
},
|
|
EquationLanguage::Add([a,b]) => {
|
|
// as we don't know a and b yet, defer to future iteration
|
|
if !types.contains_key(&a) || !types.contains_key(&b) {
|
|
continue;
|
|
}
|
|
|
|
match (&types[&a], &types[&b]) {
|
|
(SpecialTerm::MonicNonconstPoly(poly), SpecialTerm::Monomial(deg, coeff)) => {
|
|
if poly.len() <= *deg || poly[*deg] != RATIONAL_ZERO {
|
|
continue;
|
|
}
|
|
|
|
let mut poly = poly.clone();
|
|
poly[*deg] = coeff.clone();
|
|
types.insert(id, SpecialTerm::MonicNonconstPoly(poly));
|
|
modifications += 1;
|
|
},
|
|
_ => { },
|
|
}
|
|
},
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
println!("{} modifications!", modifications);
|
|
}
|
|
|
|
types
|
|
}
|