use crate::language::{EGraph, EquationLanguage, Rational, RATIONAL_ONE, RATIONAL_ZERO}; use std::collections::HashMap; use egg::Id; #[derive(Debug,Clone)] pub enum SpecialTerm { Constant(Rational), PowerOfX(usize), Monomial(usize, Rational), MonicNonconstPoly(Vec), Factorization(Rational, Vec>), Other, } fn search_for(egraph: &EGraph, f: F) -> HashMap where F: Fn(Id, &EquationLanguage, &HashMap) -> Option { let mut result: HashMap = HashMap::new(); let mut modifications: usize = 1; while modifications > 0 { modifications = 0; for cls in egraph.classes() { let id = cls.id; if result.contains_key(&id) { continue; } for node in &cls.nodes { if let Some(x) = f(id, node, &result) { result.insert(id, x); modifications += 1; } } } println!("{} modifications!", modifications); } result } pub fn analyze3(egraph: &EGraph, eclass: Id) { let constants = search_for(egraph, |id, _, _| egraph[id].data.as_ref().map(|c|c.clone()) ); println!("{:?}", constants); let powers_of_x = search_for(egraph, |_, node, matches| match *node { EquationLanguage::Unknown => Some(1), EquationLanguage::Mul([a,b]) => { if !matches.contains_key(&a) || !matches.contains_key(&b) { return None; } let (dega, degb) = (matches[&a], matches[&b]); Some(dega + degb) }, _ => None, }); println!("{:?}", powers_of_x); let monomials = search_for(egraph, |id, node, _| { if let Some(deg) = powers_of_x.get(&id) { return Some((*deg, RATIONAL_ONE.clone())); } if let Some(c) = constants.get(&id) { return Some((0, c.clone())); } match *node { EquationLanguage::Mul([a,b]) => { if !constants.contains_key(&a) || !powers_of_x.contains_key(&b) { return None; } let (coeff, deg) = (&constants[&a], powers_of_x[&b]); Some((deg, coeff.clone())) }, _ => None, } }); println!("{:?}", monomials); let monic_polynomials = search_for(egraph, |id, node, matches| { if let Some(deg) = powers_of_x.get(&id) { let mut poly: Vec = Vec::new(); poly.resize(*deg, RATIONAL_ZERO); poly.push(RATIONAL_ONE.clone()); Some(poly) } else { match *node { EquationLanguage::Add([a,b]) => { if !matches.contains_key(&a) || !monomials.contains_key(&b) { return None; } let (leading, (deg, coeff)) = (&matches[&a], &monomials[&b]); if leading.len() <= *deg || leading[*deg] != RATIONAL_ZERO { return None; } let mut poly = leading.clone(); poly[*deg] = coeff.clone(); Some(poly) }, _ => None, } } }); for p in &monic_polynomials { println!("{:?}", p); } let factorizations: HashMap>)> = search_for(egraph, |id, node, matches| { if let Some(c) = constants.get(&id) { return Some((c.clone(), vec![])); } if let Some(poly) = monic_polynomials.get(&id) { return Some((RATIONAL_ONE.clone(), vec![poly.clone()])); } match *node { EquationLanguage::Mul([a,b]) => { if !matches.contains_key(&a) || !monic_polynomials.contains_key(&b) { return None; } let ((factor, polys), newpoly) = (&matches[&a], &monic_polynomials[&b]); let mut combined: Vec> = polys.clone(); combined.push(newpoly.clone()); Some((factor.clone(), combined)) }, _ => None, } }); /* for p in &factorizations { println!("{:?}", p); } */ println!("{:?}", factorizations[&eclass]); } pub fn analyze2(egraph: &EGraph) -> HashMap { let mut types: HashMap = HashMap::new(); let mut modifications: usize = 1; while modifications > 0 { modifications = 0; for cls in egraph.classes() { let id = cls.id; if types.contains_key(&id) { continue; } if let Some(c) = &egraph[id].data { types.insert(id, SpecialTerm::Constant(c.clone())); modifications += 1; continue; } for node in &cls.nodes { match *node { EquationLanguage::Unknown => { types.insert(id, SpecialTerm::PowerOfX(1)); modifications += 1; }, EquationLanguage::Mul([a,b]) => { // as we don't know a and b yet, defer to future iteration if !types.contains_key(&a) || !types.contains_key(&b) { continue; } match (&types[&a], &types[&b]) { (SpecialTerm::PowerOfX(dega), SpecialTerm::PowerOfX(degb)) => { types.insert(id, SpecialTerm::PowerOfX(*dega + *degb)); modifications += 1; }, (SpecialTerm::Constant(coeff), SpecialTerm::PowerOfX(deg)) => { types.insert(id, SpecialTerm::Monomial(*deg, coeff.clone())); modifications += 1; }, _ => { }, } }, EquationLanguage::Add([a,b]) => { // as we don't know a and b yet, defer to future iteration if !types.contains_key(&a) || !types.contains_key(&b) { continue; } match (&types[&a], &types[&b]) { (SpecialTerm::MonicNonconstPoly(poly), SpecialTerm::Monomial(deg, coeff)) => { if poly.len() <= *deg || poly[*deg] != RATIONAL_ZERO { continue; } let mut poly = poly.clone(); poly[*deg] = coeff.clone(); types.insert(id, SpecialTerm::MonicNonconstPoly(poly)); modifications += 1; }, _ => { }, } }, _ => {} } } } println!("{} modifications!", modifications); } types }