initial version
This commit is contained in:
commit
68b6293028
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
/target
|
||||
Cargo.lock
|
7
Cargo.toml
Normal file
7
Cargo.toml
Normal file
@ -0,0 +1,7 @@
|
||||
[package]
|
||||
name = "solveq"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
egg = "0.9.5"
|
342
src/language.rs
Normal file
342
src/language.rs
Normal file
@ -0,0 +1,342 @@
|
||||
use std::{cmp::Ordering, fmt::{self,Display, Formatter}, str::FromStr, sync::LazyLock};
|
||||
use egg::{define_language, merge_option, rewrite as rw, Analysis, DidMerge, Id, Language, Subst, Var};
|
||||
|
||||
pub type EGraph = egg::EGraph<EquationLanguage, ConstantFold>;
|
||||
pub type Rewrite = egg::Rewrite<EquationLanguage, ConstantFold>;
|
||||
|
||||
define_language! {
|
||||
pub enum EquationLanguage {
|
||||
"x" = Unknown,
|
||||
"+" = Add([Id; 2]),
|
||||
"-" = Sub([Id; 2]),
|
||||
"-" = Neg([Id; 1]),
|
||||
"*" = Mul([Id; 2]),
|
||||
"/" = Div([Id; 2]),
|
||||
"^" = Power([Id; 2]),
|
||||
"=" = Equals([Id; 2]),
|
||||
"rec" = Reciprocal([Id; 1]),
|
||||
Num(Rational),
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug,Hash,Clone)]
|
||||
pub struct Rational {
|
||||
pub num: i64,
|
||||
pub denom: u64,
|
||||
}
|
||||
|
||||
pub const RATIONAL_ZERO: Rational = Rational { num: 0, denom: 1 };
|
||||
pub const RATIONAL_ONE: Rational = Rational { num: 1, denom: 1 };
|
||||
|
||||
impl Display for Rational {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
|
||||
if self.denom == 1 {
|
||||
write!(f, "{}", self.num)
|
||||
} else {
|
||||
write!(f, "{}/{}", self.num, self.denom)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl FromStr for Rational {
|
||||
type Err = std::num::ParseIntError;
|
||||
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
||||
Ok(Rational { num: s.parse::<i64>()?, denom: 1 })
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for Rational {
|
||||
fn eq(&self, other: &Rational) -> bool {
|
||||
(self.num as i128) * (other.denom as i128) == (other.num as i128) * (self.denom as i128)
|
||||
}
|
||||
}
|
||||
|
||||
impl Eq for Rational {}
|
||||
|
||||
impl PartialOrd for Rational {
|
||||
fn partial_cmp(&self, other: &Rational) -> Option<Ordering> {
|
||||
i128::partial_cmp(
|
||||
&((self.num as i128) * (other.denom as i128)),
|
||||
&((other.num as i128) * (other.denom as i128))
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for Rational {
|
||||
fn cmp(&self, other: &Rational) -> Ordering {
|
||||
i128::cmp(
|
||||
&((self.num as i128) * (other.denom as i128)),
|
||||
&((other.num as i128) * (other.denom as i128))
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl Rational {
|
||||
fn simplify(&mut self) {
|
||||
let mut a = self.num.abs() as u64;
|
||||
let mut b = self.denom;
|
||||
|
||||
if a > b {
|
||||
(a, b) = (b, a);
|
||||
}
|
||||
|
||||
while a > 0 {
|
||||
(a, b) = (b % a, a);
|
||||
}
|
||||
|
||||
self.num /= b as i64;
|
||||
self.denom /= b;
|
||||
}
|
||||
}
|
||||
|
||||
// constant folding code essentially comes from egg examples, except using rationals instead of floats
|
||||
#[derive(Default)]
|
||||
pub struct ConstantFold;
|
||||
impl Analysis<EquationLanguage> for ConstantFold {
|
||||
type Data = Option<Rational>;
|
||||
|
||||
fn make(egraph: &EGraph, enode: &EquationLanguage) -> Self::Data {
|
||||
let x = |i: &Id| -> Self::Data { egraph[*i].data.clone() };
|
||||
|
||||
let mut value = match enode {
|
||||
EquationLanguage::Num(c) => c.clone(),
|
||||
EquationLanguage::Add([a,b]) => Rational {
|
||||
num: x(a)?.num * x(b)?.denom as i64 + x(a)?.denom as i64 * x(b)?.num,
|
||||
denom: x(a)?.denom * x(b)?.denom
|
||||
},
|
||||
EquationLanguage::Sub([a,b]) => Rational {
|
||||
num: x(a)?.num * x(b)?.denom as i64 - x(a)?.denom as i64 * x(b)?.num,
|
||||
denom: x(a)?.denom * x(b)?.denom
|
||||
},
|
||||
EquationLanguage::Mul([a,b]) => Rational {
|
||||
num: x(a)?.num * x(b)?.num,
|
||||
denom: x(a)?.denom * x(b)?.denom
|
||||
},
|
||||
EquationLanguage::Div([a,b]) => {
|
||||
if x(b)?.num == 0 {
|
||||
return None;
|
||||
} else if x(b)?.num > 0 {
|
||||
Rational {
|
||||
num: x(a)?.num * x(b)?.denom as i64,
|
||||
denom: x(b)?.num as u64 * x(a)?.denom,
|
||||
}
|
||||
} else {
|
||||
Rational {
|
||||
num: - x(a)?.num * x(b)?.denom as i64,
|
||||
denom: (-x(b)?.num) as u64 * x(a)?.denom,
|
||||
}
|
||||
}
|
||||
},
|
||||
EquationLanguage::Neg([a]) => Rational {
|
||||
num: -x(a)?.num,
|
||||
denom: x(a)?.denom,
|
||||
},
|
||||
EquationLanguage::Reciprocal([a]) => Rational {
|
||||
num: if x(a)?.num > 0 { x(a)?.denom as i64 } else { - (x(a)?.denom as i64) },
|
||||
denom: x(a)?.num.abs() as u64,
|
||||
},
|
||||
_ => return None,
|
||||
};
|
||||
|
||||
value.simplify();
|
||||
|
||||
Some(value)
|
||||
}
|
||||
|
||||
fn merge(&mut self, to: &mut Self::Data, from: Self::Data) -> DidMerge {
|
||||
merge_option(to, from, |a, b| {
|
||||
assert!(a == &b, "Merged non-equal constants");
|
||||
DidMerge(false, false)
|
||||
})
|
||||
}
|
||||
|
||||
fn modify(egraph: &mut EGraph, id: Id) {
|
||||
let data = egraph[id].data.clone();
|
||||
if let Some(c) = data {
|
||||
let added = egraph.add(EquationLanguage::Num(c));
|
||||
egraph.union(id, added);
|
||||
egraph[id].nodes.retain(|n|n.is_leaf());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn is_nonzero_const(var: &str) -> impl Fn(&mut EGraph, Id, &Subst) -> bool {
|
||||
let var: Var = var.parse().unwrap();
|
||||
move |egraph, _, subst| {
|
||||
egraph[subst[var]].data.as_ref().filter(|x|*x != &RATIONAL_ZERO).is_some()
|
||||
}
|
||||
}
|
||||
|
||||
pub static RULES: LazyLock<Vec<Rewrite>> = LazyLock::new(||vec![
|
||||
rw!("commute-add"; "(+ ?x ?y)" => "(+ ?y ?x)"),
|
||||
rw!("commute-mul"; "(* ?x ?y)" => "(* ?y ?x)"),
|
||||
|
||||
rw!("assoc-add"; "(+ ?x (+ ?y ?z))" => "(+ (+ ?x ?y) ?z)"),
|
||||
rw!("assoc-mul"; "(* ?x (* ?y ?z))" => "(* (* ?x ?y) ?z)"),
|
||||
|
||||
rw!("add-0"; "(+ ?x 0)" => "?x"),
|
||||
rw!("mul-0"; "(* ?x 0)" => "0"),
|
||||
rw!("mul-1"; "(* ?x 1)" => "?x"),
|
||||
|
||||
rw!("add-sub"; "(+ ?x (* (-1) ?x))" => "0"),
|
||||
// division by zero shouldn't happen unless input is invalid
|
||||
rw!("mul-div"; "(* ?x (rec ?x))" => "1" if is_nonzero_const("?y")),
|
||||
|
||||
rw!("distribute"; "(* (+ ?x ?y) ?z)" => "(+ (* ?x ?z) (* ?y ?z))"),
|
||||
rw!("factor"; "(+ (* ?x ?z) (* ?y ?z))" => "(* (+ ?x ?y) ?z)"),
|
||||
|
||||
rw!("square"; "(^ ?x 2)" => "(* ?x ?x)"),
|
||||
rw!("cube"; "(^ ?x 3)" => "(* ?x (* ?x ?x))"),
|
||||
/*
|
||||
rw!("inv-square"; "(* ?x ?x)" => "(^ ?x 2)"),
|
||||
rw!("inv-cube"; "(* ?x (* ?x ?x))" => "(^ ?x 3)"),
|
||||
*/
|
||||
|
||||
rw!("sub"; "(- ?x ?y)" => "(+ ?x (* -1 ?y))"),
|
||||
rw!("neg"; "(- ?x)" => "(* -1 ?x)"),
|
||||
// division by zero shouldn't happen unless input is invalid
|
||||
rw!("div"; "(/ ?x ?y)" => "(* ?x (rec ?y))" if is_nonzero_const("?y")),
|
||||
|
||||
rw!("factor_poly"; "(+ (* x ?x) ?y)" => "(* ?x (+ x (* ?y (rec ?x))))" if is_nonzero_const("?x")),
|
||||
]);
|
||||
|
||||
pub struct PlusTimesCostFn;
|
||||
impl egg::CostFunction<EquationLanguage> for PlusTimesCostFn {
|
||||
type Cost = usize;
|
||||
fn cost<C>(&mut self, enode: &EquationLanguage, mut costs: C) -> usize
|
||||
where
|
||||
C: FnMut(Id) -> usize,
|
||||
{
|
||||
let op_cost = match enode {
|
||||
EquationLanguage::Div(_) => 1000,
|
||||
EquationLanguage::Sub(_) => 1000,
|
||||
EquationLanguage::Neg(_) => 1000,
|
||||
EquationLanguage::Reciprocal(_) => 1000,
|
||||
EquationLanguage::Power(_) => 1000,
|
||||
_ => 1,
|
||||
};
|
||||
enode.fold(op_cost, |sum, i| sum + costs(i))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug,Clone,Copy)]
|
||||
pub struct PolyStat {
|
||||
degree: usize,
|
||||
factors: usize, // non-constant factors
|
||||
ops: usize,
|
||||
monomial: bool,
|
||||
sum_of_monomials: bool,
|
||||
monic: bool,
|
||||
factorized: bool, // a product of monic polynomials and at least one constant
|
||||
}
|
||||
|
||||
#[derive(Debug,Clone,Copy)]
|
||||
pub enum FactorizationCost {
|
||||
UnwantedOps,
|
||||
Polynomial(PolyStat)
|
||||
}
|
||||
|
||||
fn score(cost: FactorizationCost) -> usize {
|
||||
match cost {
|
||||
FactorizationCost::UnwantedOps => 10000,
|
||||
FactorizationCost::Polynomial(p) =>
|
||||
if !p.factorized {
|
||||
1000
|
||||
} else {
|
||||
100 * (9 - p.factors) + p.ops
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for FactorizationCost {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
score(*self) == score(*other)
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for FactorizationCost {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
usize::partial_cmp(&score(*self), &score(*other))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct FactorizationCostFn;
|
||||
impl egg::CostFunction<EquationLanguage> for FactorizationCostFn {
|
||||
type Cost = FactorizationCost;
|
||||
|
||||
fn cost<C>(&mut self, enode: &EquationLanguage, mut costs: C) -> Self::Cost
|
||||
where
|
||||
C: FnMut(Id) -> Self::Cost,
|
||||
{
|
||||
match enode {
|
||||
EquationLanguage::Add([a,b]) => {
|
||||
match (costs(*a), costs(*b)) {
|
||||
(FactorizationCost::Polynomial(p1),FactorizationCost::Polynomial(p2)) => {
|
||||
// we only ever want to add monomials
|
||||
let result_monic = if p1.degree > p2.degree {
|
||||
p1.monic
|
||||
} else if p2.degree > p1.degree {
|
||||
p2.monic
|
||||
} else {
|
||||
false
|
||||
};
|
||||
|
||||
if !p1.sum_of_monomials || !p2.sum_of_monomials {
|
||||
FactorizationCost::UnwantedOps
|
||||
} else {
|
||||
FactorizationCost::Polynomial(PolyStat {
|
||||
degree: usize::max(p1.degree, p2.degree),
|
||||
factors: 1,
|
||||
ops: p1.ops + p2.ops,
|
||||
monomial: false,
|
||||
sum_of_monomials: p1.sum_of_monomials && p2.sum_of_monomials,
|
||||
monic: result_monic,
|
||||
factorized: result_monic,
|
||||
})
|
||||
}
|
||||
},
|
||||
_ => FactorizationCost::UnwantedOps
|
||||
}
|
||||
},
|
||||
EquationLanguage::Mul([a,b]) => {
|
||||
match (costs(*a), costs(*b)) {
|
||||
(FactorizationCost::Polynomial(p1), FactorizationCost::Polynomial(p2)) => {
|
||||
FactorizationCost::Polynomial(PolyStat {
|
||||
degree: p1.degree + p2.degree,
|
||||
factors: p1.factors + p2.factors,
|
||||
ops: p1.ops + p2.ops,
|
||||
monomial: p1.monomial && p2.monomial,
|
||||
sum_of_monomials: p1.monomial && p2.monomial,
|
||||
monic: p1.monic && p2.monic,
|
||||
factorized: (p1.monic && p2.factorized) || (p2.monic && p1.factorized)
|
||||
})
|
||||
},
|
||||
_ => FactorizationCost::UnwantedOps
|
||||
}
|
||||
},
|
||||
EquationLanguage::Num(c) => {
|
||||
FactorizationCost::Polynomial(PolyStat {
|
||||
degree: 0,
|
||||
factors: 0,
|
||||
ops: 0,
|
||||
monomial: true,
|
||||
sum_of_monomials: true,
|
||||
monic: false,
|
||||
factorized: true
|
||||
})
|
||||
},
|
||||
EquationLanguage::Unknown => {
|
||||
FactorizationCost::Polynomial(PolyStat {
|
||||
degree: 1,
|
||||
factors: 1,
|
||||
ops: 0,
|
||||
monomial: true,
|
||||
sum_of_monomials: true,
|
||||
monic: true,
|
||||
factorized: true
|
||||
})
|
||||
},
|
||||
_ => FactorizationCost::UnwantedOps,
|
||||
}
|
||||
}
|
||||
}
|
3
src/lib.rs
Normal file
3
src/lib.rs
Normal file
@ -0,0 +1,3 @@
|
||||
pub mod language;
|
||||
pub mod normal_form;
|
||||
pub mod parse;
|
226
src/main.rs
Normal file
226
src/main.rs
Normal file
@ -0,0 +1,226 @@
|
||||
use egg::{Extractor, Pattern, RecExpr, Runner};
|
||||
use solveq::language::{RULES, EquationLanguage, PlusTimesCostFn, FactorizationCostFn};
|
||||
use solveq::normal_form::analyze3;
|
||||
use solveq::parse::parse_equation;
|
||||
|
||||
static TEST_EQUATIONS: &[&str] = &[
|
||||
"(x + 50) * 10 - 150 - 100",
|
||||
"(x - 2) * (x + 2) - 0",
|
||||
"x ^ 2 - 4",
|
||||
"x ^ 2 - 2 - 0",
|
||||
"x ^ 2 - (2 * x + 15)",
|
||||
"(x ^ 2 - 2 * x - 15) * (x + 5) - 0",
|
||||
"x ^ 3 + 3 * x ^ 2 - 25 * x - 75 - 0",
|
||||
];
|
||||
|
||||
fn main() {
|
||||
for eq in TEST_EQUATIONS {
|
||||
let start = parse_equation(*eq).unwrap();
|
||||
|
||||
// println!("{:?}", &start);
|
||||
// do transformation to left - right = 0
|
||||
|
||||
let mut runner = Runner::default()
|
||||
.with_explanations_enabled()
|
||||
.with_expr(&start)
|
||||
.run(&*RULES);
|
||||
|
||||
let extractor = Extractor::new(&runner.egraph, FactorizationCostFn);
|
||||
|
||||
let (best_cost, best_expr) = extractor.find_best(runner.roots[0]);
|
||||
|
||||
println!("{}", start);
|
||||
println!("{:?} {:?}", best_cost, <RecExpr<EquationLanguage> as AsRef<[EquationLanguage]>>::as_ref(&best_expr));
|
||||
|
||||
|
||||
println!("");
|
||||
}
|
||||
|
||||
// let root = runner.roots[0];
|
||||
// let egraph = &runner.egraph;
|
||||
// let pattern: Pattern<EquationLanguage> = "(+ (* ?a (* x x)) ?c)".parse().unwrap();
|
||||
// let matches = pattern.search(&egraph);
|
||||
|
||||
|
||||
|
||||
// println!("{:?}", egraph.classes().count());
|
||||
|
||||
// Analyze
|
||||
// analyze3(egraph, runner.roots[0]);
|
||||
|
||||
/*
|
||||
for class in egraph.classes() {
|
||||
if monic_nonconst_polynomial(egraph, class.id).is_some() {
|
||||
let (_, best_expr) = extractor.find_best(class.id);
|
||||
println!("Monomial: {}", best_expr);
|
||||
}
|
||||
}
|
||||
|
||||
println!("{:?}", &matches);
|
||||
*/
|
||||
|
||||
|
||||
// println!("{}", runner.explain_equivalence(&start, &best_expr).get_flat_string());
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
fn power_of_x(egraph: &EGraph, eclass: Id) -> Option<usize> {
|
||||
for n in &egraph[eclass].nodes {
|
||||
match *n {
|
||||
EquationLanguage::Unknown => { return Some(1) },
|
||||
EquationLanguage::Mul([a,b]) => {
|
||||
let Some(left) = power_of_x(egraph, a) else { continue };
|
||||
let Some(right) = power_of_x(egraph, b) else { continue };
|
||||
return Some(left + right);
|
||||
},
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
fn monomial(egraph: &EGraph, eclass: Id) -> Option<(usize, Rational)> {
|
||||
if let Some(deg) = power_of_x(egraph, eclass) {
|
||||
return Some((deg, RATIONAL_ONE.clone()));
|
||||
}
|
||||
|
||||
for n in &egraph[eclass].nodes {
|
||||
match *n {
|
||||
EquationLanguage::Mul([a,b]) => {
|
||||
let Some(coeff) = egraph[a].data.clone() else { continue };
|
||||
let Some(deg) = power_of_x(egraph, b) else { continue };
|
||||
return Some((deg, coeff));
|
||||
},
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
|
||||
// this is either a power_of_x, or a sum of this and a monomial
|
||||
fn monic_nonconst_polynomial(egraph: &EGraph, eclass: Id) -> Option<Vec<Rational>> {
|
||||
let mut result: Vec<Rational> = Vec::new();
|
||||
|
||||
if let Some(deg) = power_of_x(egraph, eclass) {
|
||||
result.resize(deg - 1, RATIONAL_ZERO);
|
||||
result.push(RATIONAL_ONE.clone());
|
||||
return Some(result);
|
||||
}
|
||||
|
||||
for n in &egraph[eclass].nodes {
|
||||
match *n {
|
||||
EquationLanguage::Add([a,b]) => {
|
||||
let Some(mut leading) = monic_nonconst_polynomial(egraph, a)
|
||||
else { continue };
|
||||
let Some(addon) = monomial(egraph, b)
|
||||
else { continue };
|
||||
|
||||
if leading.len() <= addon.0 || leading[addon.0] != RATIONAL_ZERO {
|
||||
continue;
|
||||
}
|
||||
|
||||
leading[addon.0] = addon.1.clone();
|
||||
return Some(leading);
|
||||
},
|
||||
_ => {},
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
fn analyze(egraph: &EGraph, _id: Id) {
|
||||
let mut types: HashMap<Id, SpecialTerm> = HashMap::new();
|
||||
let mut todo: VecDeque<Id> = VecDeque::new();
|
||||
// todo.push_back(runner.roots[0]);
|
||||
for cls in egraph.classes() {
|
||||
todo.push_back(cls.id);
|
||||
}
|
||||
|
||||
'todo: while todo.len() > 0 {
|
||||
let id = todo.pop_front().unwrap();
|
||||
if types.contains_key(&id) {
|
||||
continue 'todo;
|
||||
}
|
||||
|
||||
if let Some(c) = &egraph[id].data {
|
||||
types.insert(id, SpecialTerm::Constant(c.clone()));
|
||||
continue 'todo;
|
||||
}
|
||||
|
||||
'nodes: for n in &egraph[id].nodes {
|
||||
match *n {
|
||||
EquationLanguage::Unknown => {
|
||||
types.insert(id, SpecialTerm::PowerOfX(1));
|
||||
continue 'todo;
|
||||
},
|
||||
EquationLanguage::Mul([a,b]) => {
|
||||
if !types.contains_key(&a) {
|
||||
todo.push_back(a);
|
||||
todo.push_back(id);
|
||||
continue 'nodes;
|
||||
}
|
||||
|
||||
if !types.contains_key(&b) {
|
||||
todo.push_back(b);
|
||||
todo.push_back(id);
|
||||
continue 'nodes;
|
||||
}
|
||||
|
||||
match (&types[&a], &types[&b]) {
|
||||
(SpecialTerm::PowerOfX(dega), SpecialTerm::PowerOfX(degb)) => {
|
||||
types.insert(id, SpecialTerm::PowerOfX(*dega + *degb));
|
||||
},
|
||||
(SpecialTerm::Constant(coeff), SpecialTerm::PowerOfX(deg)) => {
|
||||
types.insert(id, SpecialTerm::Monomial(*deg, coeff.clone()));
|
||||
},
|
||||
_ => { continue 'nodes; },
|
||||
}
|
||||
continue 'todo;
|
||||
},
|
||||
EquationLanguage::Add([a,b]) => {
|
||||
if !types.contains_key(&a) {
|
||||
todo.push_front(a);
|
||||
todo.push_back(id);
|
||||
continue 'todo;
|
||||
}
|
||||
|
||||
if !types.contains_key(&b) {
|
||||
todo.push_front(b);
|
||||
todo.push_back(id);
|
||||
continue 'todo;
|
||||
}
|
||||
|
||||
match (&types[&a], &types[&b]) {
|
||||
(SpecialTerm::MonicNonconstPoly(poly), SpecialTerm::Monomial(deg, coeff)) => {
|
||||
if poly.len() <= *deg || poly[*deg] != RATIONAL_ZERO {
|
||||
continue 'nodes;
|
||||
}
|
||||
|
||||
let mut poly = poly.clone();
|
||||
poly[*deg] = coeff.clone();
|
||||
types.insert(id, SpecialTerm::MonicNonconstPoly(poly));
|
||||
},
|
||||
_ => { continue 'nodes; },
|
||||
}
|
||||
continue 'todo;
|
||||
},
|
||||
_ => {},
|
||||
}
|
||||
}
|
||||
|
||||
types.insert(id, SpecialTerm::Other);
|
||||
}
|
||||
|
||||
for (id, ty) in &types {
|
||||
if !matches!(ty, &SpecialTerm::Other) {
|
||||
println!("{:?}", &ty);
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
229
src/normal_form.rs
Normal file
229
src/normal_form.rs
Normal file
@ -0,0 +1,229 @@
|
||||
use crate::language::{EGraph, EquationLanguage, Rational, RATIONAL_ONE, RATIONAL_ZERO};
|
||||
use std::collections::HashMap;
|
||||
use egg::Id;
|
||||
|
||||
#[derive(Debug,Clone)]
|
||||
pub enum SpecialTerm {
|
||||
Constant(Rational),
|
||||
PowerOfX(usize),
|
||||
Monomial(usize, Rational),
|
||||
MonicNonconstPoly(Vec<Rational>),
|
||||
Factorization(Rational, Vec<Vec<Rational>>),
|
||||
Other,
|
||||
}
|
||||
|
||||
fn search_for<F, T>(egraph: &EGraph, f: F) -> HashMap<Id, T>
|
||||
where
|
||||
F: Fn(Id, &EquationLanguage, &HashMap<Id, T>) -> Option<T> {
|
||||
|
||||
let mut result: HashMap<Id, T> = HashMap::new();
|
||||
let mut modifications: usize = 1;
|
||||
|
||||
while modifications > 0 {
|
||||
modifications = 0;
|
||||
|
||||
for cls in egraph.classes() {
|
||||
let id = cls.id;
|
||||
if result.contains_key(&id) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for node in &cls.nodes {
|
||||
if let Some(x) = f(id, node, &result) {
|
||||
result.insert(id, x);
|
||||
modifications += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
println!("{} modifications!", modifications);
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
pub fn analyze3(egraph: &EGraph, eclass: Id) {
|
||||
let constants = search_for(egraph, |id, _, _|
|
||||
egraph[id].data.as_ref().map(|c|c.clone())
|
||||
);
|
||||
|
||||
println!("{:?}", constants);
|
||||
|
||||
let powers_of_x = search_for(egraph, |_, node, matches| match *node {
|
||||
EquationLanguage::Unknown => Some(1),
|
||||
EquationLanguage::Mul([a,b]) => {
|
||||
if !matches.contains_key(&a) || !matches.contains_key(&b) {
|
||||
return None;
|
||||
}
|
||||
|
||||
let (dega, degb) = (matches[&a], matches[&b]);
|
||||
Some(dega + degb)
|
||||
},
|
||||
_ => None,
|
||||
});
|
||||
|
||||
println!("{:?}", powers_of_x);
|
||||
|
||||
let monomials = search_for(egraph, |id, node, _| {
|
||||
if let Some(deg) = powers_of_x.get(&id) {
|
||||
return Some((*deg, RATIONAL_ONE.clone()));
|
||||
}
|
||||
|
||||
if let Some(c) = constants.get(&id) {
|
||||
return Some((0, c.clone()));
|
||||
}
|
||||
|
||||
match *node {
|
||||
EquationLanguage::Mul([a,b]) => {
|
||||
if !constants.contains_key(&a) || !powers_of_x.contains_key(&b) {
|
||||
return None;
|
||||
}
|
||||
|
||||
let (coeff, deg) = (&constants[&a], powers_of_x[&b]);
|
||||
Some((deg, coeff.clone()))
|
||||
},
|
||||
_ => None,
|
||||
}
|
||||
});
|
||||
|
||||
println!("{:?}", monomials);
|
||||
|
||||
let monic_polynomials = search_for(egraph, |id, node, matches| {
|
||||
if let Some(deg) = powers_of_x.get(&id) {
|
||||
let mut poly: Vec<Rational> = Vec::new();
|
||||
poly.resize(*deg, RATIONAL_ZERO);
|
||||
poly.push(RATIONAL_ONE.clone());
|
||||
Some(poly)
|
||||
} else {
|
||||
match *node {
|
||||
EquationLanguage::Add([a,b]) => {
|
||||
if !matches.contains_key(&a) || !monomials.contains_key(&b) {
|
||||
return None;
|
||||
}
|
||||
|
||||
let (leading, (deg, coeff)) = (&matches[&a], &monomials[&b]);
|
||||
if leading.len() <= *deg || leading[*deg] != RATIONAL_ZERO {
|
||||
return None;
|
||||
}
|
||||
|
||||
let mut poly = leading.clone();
|
||||
poly[*deg] = coeff.clone();
|
||||
Some(poly)
|
||||
},
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
for p in &monic_polynomials {
|
||||
println!("{:?}", p);
|
||||
}
|
||||
|
||||
let factorizations: HashMap<Id, (Rational, Vec<Vec<Rational>>)> = search_for(egraph, |id, node, matches| {
|
||||
if let Some(c) = constants.get(&id) {
|
||||
return Some((c.clone(), vec![]));
|
||||
}
|
||||
|
||||
if let Some(poly) = monic_polynomials.get(&id) {
|
||||
return Some((RATIONAL_ONE.clone(), vec![poly.clone()]));
|
||||
}
|
||||
|
||||
match *node {
|
||||
EquationLanguage::Mul([a,b]) => {
|
||||
if !matches.contains_key(&a) || !monic_polynomials.contains_key(&b) {
|
||||
return None;
|
||||
}
|
||||
|
||||
let ((factor, polys), newpoly) = (&matches[&a], &monic_polynomials[&b]);
|
||||
|
||||
let mut combined: Vec<Vec<Rational>> = polys.clone();
|
||||
combined.push(newpoly.clone());
|
||||
Some((factor.clone(), combined))
|
||||
},
|
||||
_ => None,
|
||||
}
|
||||
});
|
||||
|
||||
/*
|
||||
for p in &factorizations {
|
||||
println!("{:?}", p);
|
||||
}
|
||||
*/
|
||||
|
||||
println!("{:?}", factorizations[&eclass]);
|
||||
}
|
||||
|
||||
pub fn analyze2(egraph: &EGraph) -> HashMap<Id, SpecialTerm> {
|
||||
let mut types: HashMap<Id, SpecialTerm> = HashMap::new();
|
||||
|
||||
let mut modifications: usize = 1;
|
||||
|
||||
while modifications > 0 {
|
||||
modifications = 0;
|
||||
|
||||
for cls in egraph.classes() {
|
||||
let id = cls.id;
|
||||
if types.contains_key(&id) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if let Some(c) = &egraph[id].data {
|
||||
types.insert(id, SpecialTerm::Constant(c.clone()));
|
||||
modifications += 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
for node in &cls.nodes {
|
||||
match *node {
|
||||
EquationLanguage::Unknown => {
|
||||
types.insert(id, SpecialTerm::PowerOfX(1));
|
||||
modifications += 1;
|
||||
},
|
||||
EquationLanguage::Mul([a,b]) => {
|
||||
// as we don't know a and b yet, defer to future iteration
|
||||
if !types.contains_key(&a) || !types.contains_key(&b) {
|
||||
continue;
|
||||
}
|
||||
|
||||
match (&types[&a], &types[&b]) {
|
||||
(SpecialTerm::PowerOfX(dega), SpecialTerm::PowerOfX(degb)) => {
|
||||
types.insert(id, SpecialTerm::PowerOfX(*dega + *degb));
|
||||
modifications += 1;
|
||||
},
|
||||
(SpecialTerm::Constant(coeff), SpecialTerm::PowerOfX(deg)) => {
|
||||
types.insert(id, SpecialTerm::Monomial(*deg, coeff.clone()));
|
||||
modifications += 1;
|
||||
},
|
||||
_ => { },
|
||||
}
|
||||
},
|
||||
EquationLanguage::Add([a,b]) => {
|
||||
// as we don't know a and b yet, defer to future iteration
|
||||
if !types.contains_key(&a) || !types.contains_key(&b) {
|
||||
continue;
|
||||
}
|
||||
|
||||
match (&types[&a], &types[&b]) {
|
||||
(SpecialTerm::MonicNonconstPoly(poly), SpecialTerm::Monomial(deg, coeff)) => {
|
||||
if poly.len() <= *deg || poly[*deg] != RATIONAL_ZERO {
|
||||
continue;
|
||||
}
|
||||
|
||||
let mut poly = poly.clone();
|
||||
poly[*deg] = coeff.clone();
|
||||
types.insert(id, SpecialTerm::MonicNonconstPoly(poly));
|
||||
modifications += 1;
|
||||
},
|
||||
_ => { },
|
||||
}
|
||||
},
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
println!("{} modifications!", modifications);
|
||||
}
|
||||
|
||||
types
|
||||
}
|
103
src/parse.rs
Normal file
103
src/parse.rs
Normal file
@ -0,0 +1,103 @@
|
||||
use std::error::Error;
|
||||
use egg::*;
|
||||
use crate::language::EquationLanguage;
|
||||
|
||||
pub fn parse_equation(input: &str) -> Result<RecExpr<EquationLanguage>, ParseError> {
|
||||
let mut result: RecExpr<EquationLanguage> = Default::default();
|
||||
parse_equation_inner(&input.replace(" ", ""), &mut result)?;
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
// this is a very simple parser essentially copied from the technical interview
|
||||
fn parse_equation_inner(input: &str, expr: &mut RecExpr<EquationLanguage>) -> Result<Id, ParseError> {
|
||||
let mut level = 0;
|
||||
let mut precedence = 1000; // 0 = '=', 1 = '+-', 2 = '*/', 3 = '^'
|
||||
let mut operator_position: Option<usize> = None;
|
||||
|
||||
for (i,c) in input.chars().enumerate() {
|
||||
if c == '(' {
|
||||
level += 1;
|
||||
} else if c == ')' {
|
||||
level -= 1;
|
||||
}
|
||||
|
||||
if level > 0 {
|
||||
continue;
|
||||
}
|
||||
|
||||
match c {
|
||||
'^' if precedence > 3 => {
|
||||
operator_position = Some(i);
|
||||
precedence = 3;
|
||||
},
|
||||
'*' | '/' if precedence > 2 => {
|
||||
operator_position = Some(i);
|
||||
precedence = 2;
|
||||
},
|
||||
'-' | '+' if precedence > 1 => {
|
||||
operator_position = Some(i);
|
||||
precedence = 1;
|
||||
},
|
||||
'=' => {
|
||||
operator_position = Some(i);
|
||||
precedence = 0;
|
||||
},
|
||||
_ => {},
|
||||
}
|
||||
}
|
||||
|
||||
// no top level operator => either primitive item or in parantheses
|
||||
if let Some(operator_position) = operator_position {
|
||||
if operator_position == 0 && input.starts_with("-") {
|
||||
let inner = parse_equation_inner(&input[1 .. input.len()], expr)?;
|
||||
let id = expr.add(EquationLanguage::from_op("-", vec![inner])?);
|
||||
return Ok(id);
|
||||
}
|
||||
|
||||
let left = parse_equation_inner(&input[0 .. operator_position], expr)?;
|
||||
let right = parse_equation_inner(&input[operator_position+1 .. input.len()], expr)?;
|
||||
|
||||
let id = expr.add(EquationLanguage::from_op(
|
||||
&input[operator_position .. operator_position + 1],
|
||||
vec![left, right]
|
||||
)?);
|
||||
|
||||
Ok(id)
|
||||
} else {
|
||||
if input.starts_with("(") && input.ends_with(")") {
|
||||
// expression in parentheses
|
||||
parse_equation_inner(&input[1..input.len()-1], expr)
|
||||
} else {
|
||||
// standalone integer
|
||||
if input == "x" {
|
||||
let id = expr.add(EquationLanguage::Unknown);
|
||||
Ok(id)
|
||||
} else {
|
||||
input.parse::<i64>()
|
||||
.map_err(|_|ParseError(format!("Failed conversion to i64: {}", &input)))?;
|
||||
let id = expr.add(EquationLanguage::from_op(
|
||||
input, vec![]
|
||||
)?);
|
||||
Ok(id)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct ParseError(String);
|
||||
|
||||
impl Error for ParseError {}
|
||||
|
||||
impl std::fmt::Display for ParseError {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{}", &self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<FromOpError> for ParseError {
|
||||
fn from(value: FromOpError) -> Self {
|
||||
ParseError(format!("Error parsing {}", &value))
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user