clean up the code a little

This commit is contained in:
Florian Stecker 2025-10-11 16:37:38 -04:00
parent 1c9134d87f
commit 56e13f8000
3 changed files with 125 additions and 113 deletions

View File

@ -6,7 +6,7 @@ import json
def decode_protobuf(subformats: dict, format_prefix: str, data: bytes):
result = []
for (k,v) in iavltree.parse_struct(data):
for (k,v) in iavltree.parse_pb(data):
idx = f'{format_prefix}.{k}'
if idx in subformats:
f = subformats[idx]
@ -43,6 +43,7 @@ def decode_output(format: str, data: bytes) -> str:
else:
return data
def get_args():
parser = argparse.ArgumentParser(description="Read the IAVL tree in a cosmos snapshot")
parser.add_argument('-d', '--database', help='Path to database (application.db folder)')
@ -68,13 +69,14 @@ p_iterate = subparsers.add_parser('iterate_values', help = 'Iterate over items w
p_iterate.add_argument('prefix', help = 'Prefix (e.g. "s/k:emissions/")')
p_iterate.add_argument('key', nargs='*', help = 'Key parts')
args = parser.parse_args()
return parser.parse_args()
def run(args):
dbpath = args.database if args.database is not None else 'data/application.db'
keyformat = args.keyformat if args.keyformat is not None else ''
valueformat = args.valueformat if args.valueformat is not None else 'b'
if args.key is None or len(args.key) == 0:
if args.cmd == 'max_height' or args.key is None or len(args.key) == 0:
key = None
else:
if len(args.key) > len(keyformat) + 1:
@ -95,8 +97,9 @@ with plyvel.DB(dbpath) as db:
if args.cmd == 'max_height':
print(height)
elif args.cmd == 'get':
result = iavltree.walk_disk(db, args.prefix, height, keyformat, key)
result = iavltree.get(db, args.prefix, height, keyformat, key)
if result is not None:
print(decode_output(valueformat, result))
elif args.cmd == 'count':
result = iavltree.count(db, args.prefix, height, keyformat, key = key)
@ -115,3 +118,7 @@ with plyvel.DB(dbpath) as db:
print((k, decode_output(valueformat, v)))
except BrokenPipeError:
pass
if __name__ == '__main__':
args = get_args()
run(args)

View File

@ -3,7 +3,7 @@ import struct
import numpy as np
# functions for reading IAVL tree
def read_varint(x: bytes, offset: int = 0) -> int:
def read_varint(x: bytes, offset: int = 0) -> tuple[int, int]:
result = 0
factor = 1
@ -15,7 +15,7 @@ def read_varint(x: bytes, offset: int = 0) -> int:
return result // 2, offset+i+1
factor *= 128
def read_uvarint(x: bytes, offset: int = 0) -> int:
def read_uvarint(x: bytes, offset: int = 0) -> tuple[int, int]:
result = 0
factor = 1
@ -27,6 +27,20 @@ def read_uvarint(x: bytes, offset: int = 0) -> int:
return result, offset+i+1
factor *= 128
def write_uvarint(x: int) -> list[int]:
if x < 0:
raise Exception('write_uvarint only supports positive integers')
elif x == 0:
return [0]
result = []
while x > 0:
result.append(128 + x % 128)
x //= 128
result[-1] -= 128
return result
def read_key(key: bytes) -> tuple[int, int] | None:
if not key.startswith(b's'):
return None
@ -73,26 +87,7 @@ def read_node(node: bytes) -> tuple[int, int, bytes, tuple[int, int], tuple[int,
return (height, length, key, (left_version, left_nonce), (right_version, right_nonce))
def walk(tree, version, searchkey):
if (version, 1) not in tree:
return None
node = tree[(version, 1)]
if len(node) == 2: # root copy?
node = tree[node]
while node[0] > 0:
nodekey = node[2]
if searchkey < nodekey:
next = node[3]
else:
next = node[4]
node = tree[next]
return node[3]
def walk_disk_raw(db, prefix: bytes, version: int, searchkey: bytes) -> None | bytes:
def get_raw(db, prefix: bytes, version: int, searchkey: bytes) -> None | bytes:
root = db.get(prefix + write_key((version, 1)))
if root is None:
return None
@ -118,7 +113,7 @@ def walk_disk_raw(db, prefix: bytes, version: int, searchkey: bytes) -> None | b
else:
return None
def walk_disk_next_key_raw(db, prefix: bytes, version: int, searchkey: bytes) -> None | bytes:
def get_next_key_raw(db, prefix: bytes, version: int, searchkey: bytes) -> None | bytes:
root = db.get(prefix + write_key((version, 1)))
if root is None:
return None
@ -144,10 +139,10 @@ def walk_disk_next_key_raw(db, prefix: bytes, version: int, searchkey: bytes) ->
return lowest_geq_key
def walk_disk(db, prefix: str, version: int, format: str, searchkey: list) -> None | bytes:
return walk_disk_raw(db, prefix.encode('utf-8'), version, encode_key(format, searchkey))
def get(db, prefix: str, version: int, format: str, searchkey: list) -> None | bytes:
return get_raw(db, prefix.encode('utf-8'), version, encode_key(format, searchkey))
def parse_struct(data):
def parse_pb(data):
n = 0
results = []
@ -215,6 +210,10 @@ def encode_key(format: str, key: list) -> bytes:
result_bytes += list(struct.pack('>Q', key[i+1]))
elif f == 'q':
result_bytes += list(struct.pack('>Q', key[i+1] + (1<<63)))
elif f == 'b':
data = list(bytes.fromhex(key[i+1]))
result_bytes += write_uvarint(len(data))
result_bytes += data
return bytes(result_bytes)
@ -242,6 +241,11 @@ def decode_key(format: str, key: bytes) -> list:
v = struct.unpack('>Q', key[idx:idx+8])[0]
result.append(v - (1<<63))
idx += 8
elif f == 'b':
length, offset = read_uvarint(key[idx:])
data = key[idx+offset:idx+offset+length]
result.append(data.hex().upper())
idx += offset + length
if idx < len(key):
result.append(key[idx:])

View File

@ -2,14 +2,13 @@
"cells": [
{
"cell_type": "code",
"execution_count": 168,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import plyvel\n",
"from itertools import islice\n",
"\n",
"%run -i read_tree.py"
"import iavltree"
]
},
{
@ -18,8 +17,8 @@
"metadata": {},
"outputs": [],
"source": [
"db = plyvel.DB('../node/nodedir/data/application.db')\n",
"height = max_height(db)\n",
"# db = plyvel.DB('../node/nodedir/data/application.db')\n",
"height = iavltree.max_height(db)\n",
"height"
]
},
@ -29,9 +28,7 @@
"metadata": {},
"outputs": [],
"source": [
"it = iterate(db, 's/k:mint/', height)\n",
"[k for k, v in it]\n",
"it.inner.lookups"
"[k for k, v in iavltree.iterate(db, 's/k:mint/', height)]"
]
},
{
@ -40,7 +37,7 @@
"metadata": {},
"outputs": [],
"source": [
"dict(parse_struct(next(iterate(db, 's/k:mint/', height, key = [138]))[1]))"
"dict(iavltree.parse_pb(next(iavltree.iterate(db, 's/k:mint/', height, key = [138]))[1]))"
]
},
{
@ -49,19 +46,10 @@
"metadata": {},
"outputs": [],
"source": [
"it = iterate(db, 's/k:emissions/', height, key = [62, 64], format = 'Qss')\n",
"ooiiregrets = [(k[2],k[3],value[1],float(value[2])) for k,v in it for value in (dict(parse_struct(v)),)]\n",
"it = iavltree.iterate(db, 's/k:emissions/', height, key = [62, 64], format = 'Qss')\n",
"ooiiregrets = [(k[2],k[3],value[1],float(value[2])) for k,v in it for value in (dict(iavltree.parse_pb(v)),)]\n",
"\n",
"len(ooiiregrets), it.inner.lookups"
]
},
{
"cell_type": "code",
"execution_count": 181,
"metadata": {},
"outputs": [],
"source": [
"keynames = {0: \"Params\", 1: \"TotalStake\", 2: \"TopicStake\", 3: \"Rewards\", 4: \"NextTopicId\", 5: \"Topics\", 6: \"TopicWorkers\", 7: \"TopicReputers\", 8: \"DelegatorStake\", 9: \"DelegateStakePlacement\", 10: \"TargetStake\", 11: \"Inferences\", 12: \"Forecasts\", 13: \"WorkerNodes\", 14: \"ReputerNodes\", 15: \"LatestInferencesTs\", 16: \"ActiveTopics\", 17: \"AllInferences\", 18: \"AllForecasts\", 19: \"AllLossBundles\", 20: \"StakeRemoval\", 21: \"StakeByReputerAndTopicId\", 22: \"DelegateStakeRemoval\", 23: \"AllTopicStakeSum\", 24: \"AddressTopics\", 24: \"WhitelistAdmins\", 25: \"ChurnableTopics\", 26: \"RewardableTopics\", 27: \"NetworkLossBundles\", 28: \"NetworkRegrets\", 29: \"StakeByReputerAndTopicId\", 30: \"ReputerScores\", 31: \"InferenceScores\", 32: \"ForecastScores\", 33: \"ReputerListeningCoefficient\", 34: \"InfererNetworkRegrets\", 35: \"ForecasterNetworkRegrets\", 36: \"OneInForecasterNetworkRegrets\", 37: \"OneInForecasterSelfNetworkRegrets\", 38: \"UnfulfilledWorkerNonces\", 39: \"UnfulfilledReputerNonces\", 40: \"FeeRevenueEpoch\", 41: \"TopicFeeRevenue\", 42: \"PreviousTopicWeight\", 43: \"PreviousReputerRewardFraction\", 44: \"PreviousInferenceRewardFraction\", 45: \"PreviousForecastRewardFraction\", 46: \"InfererScoreEmas\", 47: \"ForecasterScoreEmas\", 48: \"ReputerScoreEmas\", 49: \"TopicRewardNonce\", 50: \"DelegateRewardPerShare\", 51: \"PreviousPercentageRewardToStakedReputers\", 52: \"StakeRemovalsByBlock\", 53: \"DelegateStakeRemovalsByBlock\", 54: \"StakeRemovalsByActor\", 55: \"DelegateStakeRemovalsByActor\", 56: \"TopicLastWorkerCommit\", 57: \"TopicLastReputerCommit\", 58: \"TopicLastWorkerPayload\", 59: \"TopicLastReputerPayload\", 60: \"OpenWorkerWindows\", 61: \"LatestNaiveInfererNetworkRegrets\", 62: \"LatestOneOutInfererInfererNetworkRegrets\", 63: \"LatestOneOutInfererForecasterNetworkRegrets\", 64: \"LatestOneOutForecasterInfererNetworkRegrets\", 65: \"LatestOneOutForecasterForecasterNetworkRegrets\", 66: \"PreviousForecasterScoreRatio\", 67: \"LastDripBlock\", 68: \"TopicToNextPossibleChurningBlock\", 69: \"BlockToActiveTopics\", 70: \"BlockToLowestActiveTopicWeight\", 71: \"PreviousTopicQuantileInfererScoreEma\", 72: \"PreviousTopicQuantileForecasterScoreEma\", 73: \"PreviousTopicQuantileReputerScoreEma\", 74: \"CountInfererInclusionsInTopic\", 75: \"CountForecasterInclusionsInTopic\", 76: \"ActiveInferers\", 77: \"ActiveForecasters\", 78: \"ActiveReputers\", 79: \"LowestInfererScoreEma\", 80: \"LowestForecasterScoreEma\", 81: \"LowestReputerScoreEma\", 82: \"LossBundles\", 83: \"TotalSumPreviousTopicWeights\", 84: \"RewardCurrentBlockEmission\", 85: \"GlobalWhitelist\", 86: \"TopicCreatorWhitelist\", 87: \"TopicWorkerWhitelist\", 88: \"TopicReputerWhitelist\", 89: \"TopicWorkerWhitelistEnabled\", 90: \"TopicReputerWhitelistEnabled\", 91: \"LastMedianInferences\", 92: \"MadInferences\", 93: \"InitialInfererEmaScore\", 94: \"InitialForecasterEmaScore\", 95: \"InitialReputerEmaScore\", 96: \"GlobalWorkerWhitelist\", 97: \"GlobalReputerWhitelist\", 98: \"GlobalAdminWhitelist\", 99: \"LatestRegretStdNorm\", 100: \"LatestInfererWeights\", 101: \"LatestForecasterWeights\", 102: \"NetworkInferences\", 103: \"OutlierResistantNetworkInferences\", 104: \"MonthlyReputerRewards\", 105: \"MonthlyTopicRewards\",}"
"len(ooiiregrets), len(it.inner.lookups)"
]
},
{
@ -70,15 +58,15 @@
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"keynames = {0: \"Params\", 1: \"TotalStake\", 2: \"TopicStake\", 3: \"Rewards\", 4: \"NextTopicId\", 5: \"Topics\", 6: \"TopicWorkers\", 7: \"TopicReputers\", 8: \"DelegatorStake\", 9: \"DelegateStakePlacement\", 10: \"TargetStake\", 11: \"Inferences\", 12: \"Forecasts\", 13: \"WorkerNodes\", 14: \"ReputerNodes\", 15: \"LatestInferencesTs\", 16: \"ActiveTopics\", 17: \"AllInferences\", 18: \"AllForecasts\", 19: \"AllLossBundles\", 20: \"StakeRemoval\", 21: \"StakeByReputerAndTopicId\", 22: \"DelegateStakeRemoval\", 23: \"AllTopicStakeSum\", 24: \"AddressTopics\", 24: \"WhitelistAdmins\", 25: \"ChurnableTopics\", 26: \"RewardableTopics\", 27: \"NetworkLossBundles\", 28: \"NetworkRegrets\", 29: \"StakeByReputerAndTopicId\", 30: \"ReputerScores\", 31: \"InferenceScores\", 32: \"ForecastScores\", 33: \"ReputerListeningCoefficient\", 34: \"InfererNetworkRegrets\", 35: \"ForecasterNetworkRegrets\", 36: \"OneInForecasterNetworkRegrets\", 37: \"OneInForecasterSelfNetworkRegrets\", 38: \"UnfulfilledWorkerNonces\", 39: \"UnfulfilledReputerNonces\", 40: \"FeeRevenueEpoch\", 41: \"TopicFeeRevenue\", 42: \"PreviousTopicWeight\", 43: \"PreviousReputerRewardFraction\", 44: \"PreviousInferenceRewardFraction\", 45: \"PreviousForecastRewardFraction\", 46: \"InfererScoreEmas\", 47: \"ForecasterScoreEmas\", 48: \"ReputerScoreEmas\", 49: \"TopicRewardNonce\", 50: \"DelegateRewardPerShare\", 51: \"PreviousPercentageRewardToStakedReputers\", 52: \"StakeRemovalsByBlock\", 53: \"DelegateStakeRemovalsByBlock\", 54: \"StakeRemovalsByActor\", 55: \"DelegateStakeRemovalsByActor\", 56: \"TopicLastWorkerCommit\", 57: \"TopicLastReputerCommit\", 58: \"TopicLastWorkerPayload\", 59: \"TopicLastReputerPayload\", 60: \"OpenWorkerWindows\", 61: \"LatestNaiveInfererNetworkRegrets\", 62: \"LatestOneOutInfererInfererNetworkRegrets\", 63: \"LatestOneOutInfererForecasterNetworkRegrets\", 64: \"LatestOneOutForecasterInfererNetworkRegrets\", 65: \"LatestOneOutForecasterForecasterNetworkRegrets\", 66: \"PreviousForecasterScoreRatio\", 67: \"LastDripBlock\", 68: \"TopicToNextPossibleChurningBlock\", 69: \"BlockToActiveTopics\", 70: \"BlockToLowestActiveTopicWeight\", 71: \"PreviousTopicQuantileInfererScoreEma\", 72: \"PreviousTopicQuantileForecasterScoreEma\", 73: \"PreviousTopicQuantileReputerScoreEma\", 74: \"CountInfererInclusionsInTopic\", 75: \"CountForecasterInclusionsInTopic\", 76: \"ActiveInferers\", 77: \"ActiveForecasters\", 78: \"ActiveReputers\", 79: \"LowestInfererScoreEma\", 80: \"LowestForecasterScoreEma\", 81: \"LowestReputerScoreEma\", 82: \"LossBundles\", 83: \"TotalSumPreviousTopicWeights\", 84: \"RewardCurrentBlockEmission\", 85: \"GlobalWhitelist\", 86: \"TopicCreatorWhitelist\", 87: \"TopicWorkerWhitelist\", 88: \"TopicReputerWhitelist\", 89: \"TopicWorkerWhitelistEnabled\", 90: \"TopicReputerWhitelistEnabled\", 91: \"LastMedianInferences\", 92: \"MadInferences\", 93: \"InitialInfererEmaScore\", 94: \"InitialForecasterEmaScore\", 95: \"InitialReputerEmaScore\", 96: \"GlobalWorkerWhitelist\", 97: \"GlobalReputerWhitelist\", 98: \"GlobalAdminWhitelist\", 99: \"LatestRegretStdNorm\", 100: \"LatestInfererWeights\", 101: \"LatestForecasterWeights\", 102: \"NetworkInferences\", 103: \"OutlierResistantNetworkInferences\", 104: \"MonthlyReputerRewards\", 105: \"MonthlyTopicRewards\",}\n",
"lens = np.zeros(256, dtype = int)\n",
"\n",
"for field in range(255):\n",
" lens[field] = count(db, 's/k:emissions/', height, key = [field])\n",
" lens[field] = iavltree.count(db, 's/k:emissions/', height, key = [field])\n",
"\n",
"order = np.lexsort((np.arange(256)[::-1], lens))[::-1]\n",
"\n",
"print('Map lengths:')\n",
"\n",
"for i in range(len(order)):\n",
" if lens[order[i]] == 0 and order[i] not in keynames:\n",
" break\n",
@ -122,6 +110,19 @@
"\n",
"# found"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# allora testnet module addresses\n",
"# mod allorapendingrewards 54C6D62FF29ECFEE9A5F0366DEC0F9CB44C10BB4\n",
"# mod allorarewards F3CA54C42E5B7DC7CB2A347B21E77AC248D914D2\n",
"# mod allorastaking 3C19B4642DA1C2DBB7E44679FA48F72FD9A97E5E\n",
"# mod ecosystem 570DD38DC5BAF3112A7C83A420ED399A8E59C5FC"
]
}
],
"metadata": {