kvstore/store.ipynb
2025-10-11 16:37:38 -04:00

150 lines
7.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import plyvel\n",
"from itertools import islice\n",
"import iavltree"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# db = plyvel.DB('../node/nodedir/data/application.db')\n",
"height = iavltree.max_height(db)\n",
"height"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"[k for k, v in iavltree.iterate(db, 's/k:mint/', height)]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dict(iavltree.parse_pb(next(iavltree.iterate(db, 's/k:mint/', height, key = [138]))[1]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"it = iavltree.iterate(db, 's/k:emissions/', height, key = [62, 64], format = 'Qss')\n",
"ooiiregrets = [(k[2],k[3],value[1],float(value[2])) for k,v in it for value in (dict(iavltree.parse_pb(v)),)]\n",
"\n",
"len(ooiiregrets), len(it.inner.lookups)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"keynames = {0: \"Params\", 1: \"TotalStake\", 2: \"TopicStake\", 3: \"Rewards\", 4: \"NextTopicId\", 5: \"Topics\", 6: \"TopicWorkers\", 7: \"TopicReputers\", 8: \"DelegatorStake\", 9: \"DelegateStakePlacement\", 10: \"TargetStake\", 11: \"Inferences\", 12: \"Forecasts\", 13: \"WorkerNodes\", 14: \"ReputerNodes\", 15: \"LatestInferencesTs\", 16: \"ActiveTopics\", 17: \"AllInferences\", 18: \"AllForecasts\", 19: \"AllLossBundles\", 20: \"StakeRemoval\", 21: \"StakeByReputerAndTopicId\", 22: \"DelegateStakeRemoval\", 23: \"AllTopicStakeSum\", 24: \"AddressTopics\", 24: \"WhitelistAdmins\", 25: \"ChurnableTopics\", 26: \"RewardableTopics\", 27: \"NetworkLossBundles\", 28: \"NetworkRegrets\", 29: \"StakeByReputerAndTopicId\", 30: \"ReputerScores\", 31: \"InferenceScores\", 32: \"ForecastScores\", 33: \"ReputerListeningCoefficient\", 34: \"InfererNetworkRegrets\", 35: \"ForecasterNetworkRegrets\", 36: \"OneInForecasterNetworkRegrets\", 37: \"OneInForecasterSelfNetworkRegrets\", 38: \"UnfulfilledWorkerNonces\", 39: \"UnfulfilledReputerNonces\", 40: \"FeeRevenueEpoch\", 41: \"TopicFeeRevenue\", 42: \"PreviousTopicWeight\", 43: \"PreviousReputerRewardFraction\", 44: \"PreviousInferenceRewardFraction\", 45: \"PreviousForecastRewardFraction\", 46: \"InfererScoreEmas\", 47: \"ForecasterScoreEmas\", 48: \"ReputerScoreEmas\", 49: \"TopicRewardNonce\", 50: \"DelegateRewardPerShare\", 51: \"PreviousPercentageRewardToStakedReputers\", 52: \"StakeRemovalsByBlock\", 53: \"DelegateStakeRemovalsByBlock\", 54: \"StakeRemovalsByActor\", 55: \"DelegateStakeRemovalsByActor\", 56: \"TopicLastWorkerCommit\", 57: \"TopicLastReputerCommit\", 58: \"TopicLastWorkerPayload\", 59: \"TopicLastReputerPayload\", 60: \"OpenWorkerWindows\", 61: \"LatestNaiveInfererNetworkRegrets\", 62: \"LatestOneOutInfererInfererNetworkRegrets\", 63: \"LatestOneOutInfererForecasterNetworkRegrets\", 64: \"LatestOneOutForecasterInfererNetworkRegrets\", 65: \"LatestOneOutForecasterForecasterNetworkRegrets\", 66: \"PreviousForecasterScoreRatio\", 67: \"LastDripBlock\", 68: \"TopicToNextPossibleChurningBlock\", 69: \"BlockToActiveTopics\", 70: \"BlockToLowestActiveTopicWeight\", 71: \"PreviousTopicQuantileInfererScoreEma\", 72: \"PreviousTopicQuantileForecasterScoreEma\", 73: \"PreviousTopicQuantileReputerScoreEma\", 74: \"CountInfererInclusionsInTopic\", 75: \"CountForecasterInclusionsInTopic\", 76: \"ActiveInferers\", 77: \"ActiveForecasters\", 78: \"ActiveReputers\", 79: \"LowestInfererScoreEma\", 80: \"LowestForecasterScoreEma\", 81: \"LowestReputerScoreEma\", 82: \"LossBundles\", 83: \"TotalSumPreviousTopicWeights\", 84: \"RewardCurrentBlockEmission\", 85: \"GlobalWhitelist\", 86: \"TopicCreatorWhitelist\", 87: \"TopicWorkerWhitelist\", 88: \"TopicReputerWhitelist\", 89: \"TopicWorkerWhitelistEnabled\", 90: \"TopicReputerWhitelistEnabled\", 91: \"LastMedianInferences\", 92: \"MadInferences\", 93: \"InitialInfererEmaScore\", 94: \"InitialForecasterEmaScore\", 95: \"InitialReputerEmaScore\", 96: \"GlobalWorkerWhitelist\", 97: \"GlobalReputerWhitelist\", 98: \"GlobalAdminWhitelist\", 99: \"LatestRegretStdNorm\", 100: \"LatestInfererWeights\", 101: \"LatestForecasterWeights\", 102: \"NetworkInferences\", 103: \"OutlierResistantNetworkInferences\", 104: \"MonthlyReputerRewards\", 105: \"MonthlyTopicRewards\",}\n",
"lens = np.zeros(256, dtype = int)\n",
"\n",
"for field in range(255):\n",
" lens[field] = iavltree.count(db, 's/k:emissions/', height, key = [field])\n",
"\n",
"order = np.lexsort((np.arange(256)[::-1], lens))[::-1]\n",
"\n",
"for i in range(len(order)):\n",
" if lens[order[i]] == 0 and order[i] not in keynames:\n",
" break\n",
"\n",
" print(f'{keynames[order[i]]:50} {lens[order[i]]:9d}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# def has_prefix(db, prefix: bytes) -> bool:\n",
"# it = db.iterator(start = prefix)\n",
"# try:\n",
"# first_key, _ = next(it)\n",
"# return first_key.startswith(prefix)\n",
"# except StopIteration:\n",
"# return False\n",
"# finally:\n",
"# it.close()\n",
"\n",
"# found = []\n",
"# prefixes = [b's/']\n",
"\n",
"# for i in range(20):\n",
"# new_prefixes = []\n",
"\n",
"# for p in prefixes:\n",
"# for i in range(256):\n",
"# b = p + bytes([i])\n",
"# if has_prefix(db, b):\n",
"# if b.endswith(b'/'):\n",
"# found.append((b, db.approximate_size(b, b + b'\\xff')))\n",
"# else:\n",
"# new_prefixes.append(b)\n",
"# # new_prefixes.append(b)\n",
"\n",
"# prefixes = new_prefixes\n",
"\n",
"# found"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# allora testnet module addresses\n",
"# mod allorapendingrewards 54C6D62FF29ECFEE9A5F0366DEC0F9CB44C10BB4\n",
"# mod allorarewards F3CA54C42E5B7DC7CB2A347B21E77AC248D914D2\n",
"# mod allorastaking 3C19B4642DA1C2DBB7E44679FA48F72FD9A97E5E\n",
"# mod ecosystem 570DD38DC5BAF3112A7C83A420ED399A8E59C5FC"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}