enumerate-balanced-ideals/weyl.c

488 lines
14 KiB
C

#include "weyl.h"
#include "queue.h"
#include <stdio.h>
#include <memory.h>
#include <stdlib.h>
#define BIT(n) ((uint64_t)1 << (n))
typedef struct {
weylid_t id;
int position;
} weylid_lookup_t;
static int search(const void *key, const void *base, size_t nmem, size_t size, int (*compar) (const void *, const void *, void *), void *arg);
static int compare_root_vectors(int rank, const int *x, const int *y);
static int compare_root_vectors_qsort(const void *x, const void *y, void *arg);
static int compare_weylid_lookup(const void *x, const void *y);
static int lookup_id(weylid_t id, weylid_lookup_t *list, int len);
static weylid_t multiply_generator(int s, weylid_t w, const int *simple, const int *mapping, int rank, int positive);
static void reflect_root_vector(const int *cartan, int rank, int i, int *old, int *new);
/***************** simple helper functions **********************************/
// glibc search function, but with user pointer and returning index (or -1 if not found)
static int search (const void *key, const void *base, size_t nmemb, size_t size, int (*compar) (const void *, const void *, void *), void *arg)
{
size_t l, u, idx;
const void *p;
int comparison;
l = 0;
u = nmemb;
while (l < u) {
idx = (l + u) / 2;
p = (void *) (((const char *) base) + (idx * size));
comparison = (*compar) (key, p, arg);
if (comparison < 0)
u = idx;
else if (comparison > 0)
l = idx + 1;
else
return idx;
}
return -1;
}
// maybe we want a different ordering here?
static int compare_root_vectors(int rank, const int *x, const int *y)
{
for(int i = 0; i < rank; i++)
if(x[i] != y[i])
return x[i] - y[i];
return 0;
}
static int compare_root_vectors_qsort(const void *x, const void *y, void *arg)
{
return compare_root_vectors(*((int*)arg), x, y);
}
static int compare_weylid(const void *x, const void *y)
{
weylid_t u = *((weylid_t*)x);
weylid_t v = *((weylid_t*)y);
return u > v ? 1 : u < v ? -1 : 0;
}
static int compare_weylid_lookup(const void *x, const void *y)
{
weylid_t u = ((weylid_lookup_t*)x)->id;
weylid_t v = ((weylid_lookup_t*)y)->id;
return u > v ? 1 : u < v ? -1 : 0;
}
static int lookup_id(weylid_t id, weylid_lookup_t *list, int len)
{
weylid_lookup_t key;
key.id = id;
weylid_lookup_t *p = (weylid_lookup_t*)bsearch(&key, list, len, sizeof(weylid_lookup_t), compare_weylid_lookup);
return p->position;
}
static weylid_t multiply_generator(int s, weylid_t w, const int* simple, const int* mapping, int rank, int positive)
{
weylid_t sw = 0;
for(int i = 0; i < positive; i++) {
if(w & BIT(i))
if(mapping[i*rank+s] != -1)
sw |= BIT(mapping[i*rank+s]);
}
if(w & BIT(simple[s]))
return sw;
else
return sw | BIT(simple[s]);
}
static void reflect_root_vector(const int *cartan, int rank, int i, int *old, int *new)
{
memcpy(new, old, rank*sizeof(int));
for(int j = 0; j < rank; j++)
new[i] -= cartan[i*rank + j]*old[j];
}
/************* Weyl group infos ************************/
int weyl_rank(semisimple_type_t type)
{
int rank = 0;
for(int i = 0; i < type.n; i++)
rank += type.factors[i].rank;
return rank;
}
int weyl_order(semisimple_type_t type)
{
int order = 1;
for(int i = 0; i < type.n; i++) {
switch(type.factors[i].series) {
case 'A':
for(int j = 1; j <= type.factors[i].rank + 1; j++)
order *= j;
break;
case 'B': case 'C':
for(int j = 1; j <= type.factors[i].rank; j++)
order *= 2*j;
break;
case 'D':
for(int j = 2; j <= type.factors[i].rank; j++)
order *= 2*j;
break;
case 'E':
if(type.factors[i].rank == 6)
order *= 51840;
else if(type.factors[i].rank == 7)
order *= 2903040;
else if(type.factors[i].rank == 8)
order *= 696729600;
else
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
break;
case 'F':
ERROR(type.factors[i].rank != 4, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
order *= 1152;
break;
case 'G':
ERROR(type.factors[i].rank != 2, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
order *= 12;
break;
default:
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
}
}
return order;
}
int weyl_hyperplanes(semisimple_type_t type)
{
int hyperplanes = 0;
for(int i = 0; i < type.n; i++) {
switch(type.factors[i].series) {
case 'A':
hyperplanes += (type.factors[i].rank * (type.factors[i].rank + 1)) / 2;
break;
case 'B': case 'C':
hyperplanes += type.factors[i].rank * type.factors[i].rank;
break;
case 'D':
hyperplanes += type.factors[i].rank * (type.factors[i].rank - 1);
break;
case 'E':
if(type.factors[i].rank == 6)
hyperplanes += 36;
else if(type.factors[i].rank == 7)
hyperplanes += 63;
else if(type.factors[i].rank == 8)
hyperplanes += 120;
else
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
break;
case 'F':
ERROR(type.factors[i].rank != 4, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
hyperplanes += 24;
break;
case 'G':
ERROR(type.factors[i].rank != 2, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
hyperplanes += 6;
break;
default:
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
}
}
return hyperplanes;
}
int weyl_opposition(semisimple_type_t type, int simple_root)
{
int offset = 0;
int factor = 0;
int r, iota_r;
for(factor = 0; factor < type.n; factor++)
if(simple_root < offset + type.factors[factor].rank)
break;
else
offset += type.factors[factor].rank;
r = simple_root - offset;
switch(type.factors[factor].series) {
case 'A':
iota_r = type.factors[factor].rank - 1 - r;
break;
case 'B': case 'C':
iota_r = r;
break;
case 'D':
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank);
break;
case 'E':
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank);
break;
case 'F':
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank);
break;
case 'G':
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank);
break;
default:
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank);
}
return iota_r + offset;
}
void weyl_cartan_matrix(semisimple_type_t type, int *m)
{
int offset = 0;
int rank = weyl_rank(type);
int **A = (int**)malloc(rank*sizeof(int*));
memset(m, 0, rank*rank*sizeof(int));
for(int i = 0; i < rank; i++)
m[i*rank+i] = 2;
for(int k = 0; k < type.n; k++) {
for(int i = 0; i < type.factors[k].rank; i++) // A is the submatrix corresponding to the current simple factor
A[i] = &m[(i+offset)*rank + offset];
switch(type.factors[k].series) {
case 'A':
for(int i = 1; i < type.factors[k].rank; i++) {
A[i][i-1] = -1;
A[i-1][i] = -1;
}
break;
case 'B': // not sure at all about the order of B and C
if(type.factors[k].rank >= 2) {
A[0][1] = -2;
A[1][0] = -1;
}
for(int i = 2; i < type.factors[k].rank; i++) {
A[i][i-1] = -1;
A[i-1][i] = -1;
}
break;
case 'C':
if(type.factors[k].rank >= 2) {
A[0][1] = -1;
A[1][0] = -2;
}
for(int i = 2; i < type.factors[k].rank; i++) {
A[i][i-1] = -1;
A[i-1][i] = -1;
}
break;
case 'D':
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank);
break;
case 'E':
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank);
break;
case 'F':
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank);
break;
case 'G':
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank);
break;
default:
ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank);
}
offset += type.factors[k].rank;
}
free(A);
}
/************ memory allocation ********************/
weylgroup_element_t *weyl_alloc(semisimple_type_t type)
{
int rank = weyl_rank(type);
int order = weyl_order(type);
int *left = (int*)malloc(rank*order*sizeof(int));
int *right = (int*)malloc(rank*order*sizeof(int));
weylgroup_element_t *group = (weylgroup_element_t*)malloc(order*sizeof(weylgroup_element_t));
for(int i = 0; i < order; i++) {
group[i].left = &left[i*rank];
group[i].right = &right[i*rank];
}
return group;
}
void weyl_free(weylgroup_element_t *x)
{
free(x[0].left);
free(x[0].right);
free(x);
}
void weyl_generate(semisimple_type_t type, weylgroup_element_t *group)
{
int rank, order, positive;
queue_t queue;
int current;
int roots_known, elements, length_elements, nextids_count;
int *cartan_matrix;
int *root_vectors;
int *vector;
int *simple_roots;
int *root_mapping;
weylid_t *ids, *edges, *nextids;
weylid_lookup_t *lookup;
rank = weyl_rank(type);
order = weyl_order(type);
positive = weyl_hyperplanes(type);
ERROR(positive > 64, "We can't handle root systems with more than 64 positive roots!\n");
cartan_matrix = (int*)malloc(rank*rank *sizeof(int));
root_vectors = (int*)malloc(2*positive*rank*sizeof(int));
vector = (int*)malloc(rank *sizeof(int));
root_mapping = (int*)malloc(positive*rank *sizeof(int));
simple_roots = (int*)malloc(rank *sizeof(int));
ids = (weylid_t*)malloc(order *sizeof(weylid_t));
edges = (weylid_t*)malloc(rank*order *sizeof(weylid_t));
nextids = (weylid_t*)malloc(rank*order *sizeof(weylid_t));
lookup = (weylid_lookup_t*)malloc(order *sizeof(weylid_lookup_t));
weyl_cartan_matrix(type, cartan_matrix);
// enumerate roots
memset(root_vectors, 0, 2*positive*rank*sizeof(int));
// first the simple roots
queue_init(&queue);
for(int i = 0; i < rank; i++) {
root_vectors[rank*i + i] = 1;
queue_put(&queue, i);
}
// and then we get all others by reflecting
roots_known = rank;
while((current = queue_get(&queue)) != -1) {
for(int i = 0; i < rank; i++) {
reflect_root_vector(cartan_matrix, rank, i, &root_vectors[rank*current], vector);
int j;
for(j = 0; j < roots_known; j++)
if(compare_root_vectors(rank, &root_vectors[rank*j], vector) == 0)
break;
if(j == roots_known) {
memcpy(&root_vectors[rank*roots_known], vector, rank*sizeof(int));
queue_put(&queue, roots_known);
roots_known++;
}
}
}
ERROR(roots_known != 2*positive, "Number of roots does not match!\n")
// sort roots and restrict to positives
qsort_r(root_vectors, 2*positive, rank*sizeof(int), compare_root_vectors_qsort, &rank);
memcpy(root_vectors, &root_vectors[positive*rank], positive*rank*sizeof(int));
for(int i = 0; i < positive; i++) {
for(int j = 0; j < rank; j++) {
reflect_root_vector(cartan_matrix, rank, j, &root_vectors[rank*i], vector);
root_mapping[i*rank+j] =
search(vector, root_vectors, positive, rank*sizeof(int), compare_root_vectors_qsort, &rank);
}
}
// where in the list are the simple roots?
for(int i = 0; i < rank; i++) {
memset(vector, 0, rank*sizeof(int));
vector[i] = 1;
simple_roots[i] = search(vector, root_vectors, positive, rank*sizeof(int), compare_root_vectors_qsort, &rank);
}
// enumerate weyl group elements using difference sets
nextids[0] = 0;
nextids_count = 1;
elements = 0;
for(int len = 0; len <= positive; len++) {
length_elements = 0;
// find unique ids in edges added in the last iteration
qsort(nextids, nextids_count, sizeof(weylid_t), compare_weylid);
for(int i = 0; i < nextids_count; i++)
if(i == 0 || nextids[i] != nextids[i-1])
ids[elements + length_elements++] = nextids[i];
// add new edges
nextids_count = 0;
for(int i = elements; i < elements + length_elements; i++)
for(int j = 0; j < rank; j++) {
edges[i*rank+j] = multiply_generator(j, ids[i], simple_roots, root_mapping, rank, positive);
if(!(ids[i] & BIT(simple_roots[j]))) // the new element is longer then the old one
nextids[nextids_count++] = edges[i*rank+j];
}
elements += length_elements;
}
// translate the ids to list positions (i.e. local continuous ids)
for(int i = 0; i < order; i++) {
lookup[i].id = ids[i];
lookup[i].position = i;
}
qsort(lookup, order, sizeof(weylid_lookup_t), compare_weylid_lookup);
for(int i = 0; i < order; i++) {
group[i].id = ids[i];
for(int j = 0; j < rank; j++)
group[i].left[j] = lookup_id(edges[i*rank+j], lookup, order);
}
free(cartan_matrix);
free(root_vectors);
free(vector);
free(root_mapping);
free(simple_roots);
free(ids);
free(edges);
free(nextids);
free(lookup);
}