removed old coxeter group implementation
This commit is contained in:
312
old/coxeter.c
Normal file
312
old/coxeter.c
Normal file
@@ -0,0 +1,312 @@
|
||||
#include "coxeter.h"
|
||||
#include "queue.h"
|
||||
|
||||
#include <memory.h>
|
||||
#include <gsl/gsl_linalg.h>
|
||||
#include <gsl/gsl_blas.h>
|
||||
|
||||
static void applyGenerator(int i, double *x, double *y, int rank, double **schlaefliMatrix)
|
||||
{
|
||||
memcpy(y, x, rank*sizeof(double));
|
||||
for(int j = 0; j < rank; j++)
|
||||
y[i] -= schlaefliMatrix[i][j]*x[j];
|
||||
}
|
||||
|
||||
static int check_equal_sector(gsl_matrix *x1, gsl_matrix *x2, gsl_matrix *yinv, gsl_matrix *schlaefli, gsl_vector *starting, gsl_vector *i1, gsl_vector *i2)
|
||||
{
|
||||
double scalarProduct;
|
||||
int rank = x1->size1;
|
||||
|
||||
// calculate <y^{-1} * x1 * x2 * s, e_i> for all i, or identically the components of schlaefli*y^{-1}*x*s
|
||||
gsl_blas_dgemv(CblasNoTrans, 1.0, x2, starting, 0.0, i1);
|
||||
gsl_blas_dgemv(CblasNoTrans, 1.0, x1, i1, 0.0, i2);
|
||||
gsl_blas_dgemv(CblasNoTrans, 1.0, yinv, i2, 0.0, i1);
|
||||
gsl_blas_dgemv(CblasNoTrans, 1.0, schlaefli, i1, 0.0, i2);
|
||||
for(int i = 0; i < rank; i++)
|
||||
if(gsl_vector_get(i2, i) < 0)
|
||||
return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void invert(gsl_matrix *x, gsl_matrix *xinv)
|
||||
{
|
||||
int rank = x->size1;
|
||||
gsl_matrix *xLU = gsl_matrix_alloc(rank, rank);
|
||||
gsl_permutation *p = gsl_permutation_alloc(rank);
|
||||
int s;
|
||||
gsl_matrix_memcpy(xLU, x);
|
||||
gsl_linalg_LU_decomp(xLU, p, &s);
|
||||
gsl_linalg_LU_invert(xLU, p, xinv);
|
||||
gsl_permutation_free(p);
|
||||
gsl_matrix_free(xLU);
|
||||
}
|
||||
|
||||
static void generate_schlaefli_matrix(semisimple_type_t type, gsl_matrix *mat)
|
||||
{
|
||||
gsl_matrix_set_zero(mat);
|
||||
int offset = 0;
|
||||
|
||||
for(int k = 0; k < type.n; k++) {
|
||||
if(type.factors[k].series == 'A') {
|
||||
for(int i = 0; i < type.factors[k].rank; i++)
|
||||
for(int j = 0; j < type.factors[k].rank; j++)
|
||||
if(i == j)
|
||||
gsl_matrix_set(mat, offset + i, offset + j, 2.0);
|
||||
else if(i - j == 1 || i - j == -1)
|
||||
gsl_matrix_set(mat, offset + i, offset + j, -1.0);
|
||||
} else if(type.factors[k].series == 'B' || type.factors[k].series == 'C') {
|
||||
for(int i = 0; i < type.factors[k].rank; i++)
|
||||
for(int j = 0; j < type.factors[k].rank; j++)
|
||||
if(i == j)
|
||||
gsl_matrix_set(mat, offset + i, offset + j, 2.0);
|
||||
else if(i == 0 && j == 1 || i == 1 && j == 0)
|
||||
gsl_matrix_set(mat, offset + i, offset + j, -sqrt(2.0));
|
||||
else if(i - j == 1 || i - j == -1)
|
||||
gsl_matrix_set(mat, offset + i, offset + j, -1.0);
|
||||
} else if(type.factors[k].series == 'D') {
|
||||
for(int i = 0; i < type.factors[k].rank; i++)
|
||||
for(int j = 0; j < type.factors[k].rank; j++)
|
||||
if(i == j)
|
||||
gsl_matrix_set(mat, offset + i, offset + j, 2.0);
|
||||
else if(i > 0 && j > 0 && (i - j == 1 || i - j == -1) || i == 0 && j == 2 || i == 2 && j == 0)
|
||||
gsl_matrix_set(mat, offset + i, offset + j, -1.0);
|
||||
} else if(type.factors[k].series == 'F') {
|
||||
ERROR(type.factors[k].rank != 4, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank);
|
||||
for(int i = 0; i < 4; i++)
|
||||
gsl_matrix_set(mat, offset + i, offset + i, 2.0);
|
||||
for(int i = 0; i < 3; i++) {
|
||||
gsl_matrix_set(mat, offset + i, offset + i + 1, i == 1 ? -sqrt(2.0) : -1.0);
|
||||
gsl_matrix_set(mat, offset + i + 1, offset + i, i == 1 ? -sqrt(2.0) : -1.0);
|
||||
}
|
||||
} else if(type.factors[k].series == 'G') {
|
||||
ERROR(type.factors[k].rank != 2, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank);
|
||||
gsl_matrix_set(mat, offset + 0, offset + 0, 2.0);
|
||||
gsl_matrix_set(mat, offset + 0, offset + 1, -sqrt(3.0));
|
||||
gsl_matrix_set(mat, offset + 1, offset + 0, -sqrt(3.0));
|
||||
gsl_matrix_set(mat, offset + 1, offset + 1, 2.0);
|
||||
} else {
|
||||
ERROR(1, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank);
|
||||
}
|
||||
|
||||
offset += type.factors[k].rank;
|
||||
}
|
||||
}
|
||||
|
||||
int coxeter_rank(semisimple_type_t type)
|
||||
{
|
||||
int rank = 0;
|
||||
for(int i = 0; i < type.n; i++)
|
||||
rank += type.factors[i].rank;
|
||||
return rank;
|
||||
}
|
||||
|
||||
int coxeter_order(semisimple_type_t type)
|
||||
{
|
||||
int order = 1;
|
||||
for(int i = 0; i < type.n; i++) {
|
||||
if(type.factors[i].series == 'A') { // (rank+1)!
|
||||
for(int j = 1; j <= type.factors[i].rank + 1; j++)
|
||||
order *= j;
|
||||
} else if(type.factors[i].series == 'B' || type.factors[i].series == 'C') { // 2^rank * rank!
|
||||
for(int j = 1; j <= type.factors[i].rank; j++)
|
||||
order *= 2*j;
|
||||
} else if(type.factors[i].series == 'D') { // 2^(rank-1) * rank!
|
||||
for(int j = 2; j <= type.factors[i].rank; j++)
|
||||
order *= 2*j;
|
||||
} else if(type.factors[i].series == 'E') {
|
||||
if(type.factors[i].rank == 6)
|
||||
order *= 51840;
|
||||
else if(type.factors[i].rank == 7)
|
||||
order *= 2903040;
|
||||
else if(type.factors[i].rank == 8)
|
||||
order *= 696729600;
|
||||
else
|
||||
ERROR(1, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
} else if(type.factors[i].series == 'F') {
|
||||
ERROR(type.factors[i].rank != 4, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
order *= 1152;
|
||||
} else if(type.factors[i].series == 'G') {
|
||||
ERROR(type.factors[i].rank != 2, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
order *= 12;
|
||||
} else if(type.factors[i].series == 'H') {
|
||||
if(type.factors[i].rank == 2)
|
||||
order *= 10;
|
||||
else if(type.factors[i].rank == 3)
|
||||
order *= 120;
|
||||
else if(type.factors[i].rank == 4)
|
||||
order *= 14400;
|
||||
else
|
||||
ERROR(1, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
} else {
|
||||
ERROR(1, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
}
|
||||
}
|
||||
return order;
|
||||
}
|
||||
|
||||
int coxeter_hyperplanes(semisimple_type_t type)
|
||||
{
|
||||
int hyperplanes = 0;
|
||||
for(int i = 0; i < type.n; i++) {
|
||||
if(type.factors[i].series == 'A') // rank*(rank+1)/2
|
||||
hyperplanes += (type.factors[i].rank * (type.factors[i].rank + 1)) / 2;
|
||||
else if(type.factors[i].series == 'B' || type.factors[i].series == 'C') // rank * rank
|
||||
hyperplanes += type.factors[i].rank * type.factors[i].rank;
|
||||
else if(type.factors[i].series == 'D') // rank * (rank - 1)
|
||||
hyperplanes += type.factors[i].rank * (type.factors[i].rank - 1);
|
||||
else if(type.factors[i].series == 'E') {
|
||||
if(type.factors[i].rank == 6)
|
||||
hyperplanes += 36;
|
||||
else if(type.factors[i].rank == 7)
|
||||
hyperplanes += 63;
|
||||
else if(type.factors[i].rank == 8)
|
||||
hyperplanes += 120;
|
||||
else
|
||||
ERROR(1, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
} else if(type.factors[i].series == 'F') {
|
||||
ERROR(type.factors[i].rank != 4, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
hyperplanes += 24;
|
||||
} else if(type.factors[i].series == 'G') {
|
||||
ERROR(type.factors[i].rank != 2, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
hyperplanes += 6;
|
||||
} else {
|
||||
ERROR(1, "A Coxeter group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
}
|
||||
}
|
||||
return hyperplanes;
|
||||
}
|
||||
|
||||
unsigned long opposition_involution(semisimple_type_t type, unsigned long theta)
|
||||
{
|
||||
int offset = 0;
|
||||
unsigned long result = 0;
|
||||
for(int i = 0; i < type.n; i++) {
|
||||
unsigned long current = (theta >> offset) & ((1 << type.factors[i].rank) - 1);
|
||||
unsigned long iota_current;
|
||||
|
||||
if(type.factors[i].series == 'B' || type.factors[i].series == 'C' || type.factors[i].series == 'F' || type.factors[i].series == 'G') {
|
||||
iota_current = current;
|
||||
} else if(type.factors[i].series == 'A') {
|
||||
iota_current = 0;
|
||||
for(int j = 0; j < type.factors[i].rank; j++)
|
||||
iota_current += ((current >> j) & 1) << (type.factors[i].rank - 1 - j);
|
||||
} else if(type.factors[i].series == 'D') {
|
||||
if(type.factors[i].rank % 2 == 0) {
|
||||
iota_current = current;
|
||||
} else {
|
||||
ERROR(1, "The opposition involution for type %c%d is not yet implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
}
|
||||
} else if(type.factors[i].series == 'E') {
|
||||
ERROR(1, "The opposition involution for En is not yet implemented!\n");
|
||||
}
|
||||
|
||||
result += iota_current << offset;
|
||||
offset += type.factors[i].rank;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void generate_starting_vector(int rank, gsl_matrix *schlaefli, gsl_vector *result)
|
||||
{
|
||||
gsl_matrix *schlaefliLU = gsl_matrix_alloc(rank, rank);
|
||||
gsl_vector *diagonal = gsl_vector_alloc(rank);
|
||||
gsl_permutation *p = gsl_permutation_alloc(rank);
|
||||
int s;
|
||||
for(int i = 0; i < rank; i++)
|
||||
gsl_vector_set(diagonal, i, 1.0);
|
||||
gsl_matrix_memcpy(schlaefliLU, schlaefli);
|
||||
gsl_linalg_LU_decomp(schlaefliLU, p, &s);
|
||||
gsl_linalg_LU_solve(schlaefliLU, p, diagonal, result);
|
||||
gsl_permutation_free(p);
|
||||
gsl_vector_free(diagonal);
|
||||
gsl_matrix_free(schlaefliLU);
|
||||
}
|
||||
|
||||
void generate_coxeter_graph(semisimple_type_t type, int *result)
|
||||
{
|
||||
int rank = coxeter_rank(type);
|
||||
int order = coxeter_order(type);
|
||||
int element_count;
|
||||
gsl_matrix *schlaefliMatrix = gsl_matrix_alloc(rank, rank);
|
||||
gsl_vector *startingVector = gsl_vector_alloc(rank);
|
||||
gsl_matrix *generators = (gsl_matrix*)malloc(rank*sizeof(gsl_matrix));
|
||||
double *generators_data = (double*)malloc(rank*rank*rank*sizeof(double));
|
||||
gsl_matrix *elements = (gsl_matrix*)malloc(order*sizeof(gsl_matrix));
|
||||
double *elements_data = (double*)malloc(rank*rank*order*sizeof(double));
|
||||
gsl_matrix *inverses = (gsl_matrix*)malloc(order*sizeof(gsl_matrix));
|
||||
double *inverses_data = (double*)malloc(rank*rank*order*sizeof(double));
|
||||
gsl_vector *i1 = gsl_vector_alloc(rank);
|
||||
gsl_vector *i2 = gsl_vector_alloc(rank);
|
||||
gsl_matrix *current_element = gsl_matrix_alloc(rank, rank);
|
||||
queue_t queue;
|
||||
int current;
|
||||
|
||||
for(int i = 0; i < rank; i++)
|
||||
generators[i] = gsl_matrix_view_array(generators_data + i*rank*rank, rank, rank).matrix;
|
||||
for(int i = 0; i < order; i++)
|
||||
elements[i] = gsl_matrix_view_array(elements_data + i*rank*rank, rank, rank).matrix;
|
||||
for(int i = 0; i < order; i++)
|
||||
inverses[i] = gsl_matrix_view_array(inverses_data + i*rank*rank, rank, rank).matrix;
|
||||
|
||||
generate_schlaefli_matrix(type, schlaefliMatrix);
|
||||
generate_starting_vector(rank, schlaefliMatrix, startingVector);
|
||||
|
||||
for(int i = 0; i < rank; i++) {
|
||||
gsl_matrix_set_identity(&generators[i]);
|
||||
for(int j = 0; j < rank; j++)
|
||||
if(i == j)
|
||||
gsl_matrix_set(&generators[i], i, j, -1.0);
|
||||
else
|
||||
gsl_matrix_set(&generators[i], i, j, -gsl_matrix_get(schlaefliMatrix, i, j));
|
||||
// gsl_matrix_fprintf(stdout, &generators[i], "%f");
|
||||
// printf("\n");
|
||||
}
|
||||
|
||||
queue_init(&queue);
|
||||
queue_put(&queue, 0);
|
||||
element_count = 1;
|
||||
gsl_matrix_set_identity(&elements[0]);
|
||||
gsl_matrix_set_identity(&inverses[0]);
|
||||
while((current = queue_get(&queue)) != -1) {
|
||||
for(int i = 0; i < rank; i++) {
|
||||
int j;
|
||||
for(j = 0; j < element_count; j++) {
|
||||
if(check_equal_sector(&generators[i], &elements[current], &inverses[j], schlaefliMatrix, startingVector, i1, i2)) { // generators[i] * elements[current] = elements[j]
|
||||
result[rank*current + i] = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// if no existing element equals generators[i] * elements[current], create one
|
||||
if(j == element_count) {
|
||||
ERROR(element_count >= order, "Got more elements than the order of the group should be!\n");
|
||||
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &generators[i], &elements[current], 0.0, &elements[element_count]);
|
||||
invert(&elements[element_count], &inverses[element_count]);
|
||||
result[rank*current + i] = element_count;
|
||||
queue_put(&queue, element_count);
|
||||
element_count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ERROR(element_count != order, "Something went wrong building the Coxeter group. Found %d elements, %d expected\n", element_count, order);
|
||||
|
||||
/*
|
||||
for(int i = 0; i < order; i++) {
|
||||
printf("%d: ", i);
|
||||
for(int j = 0; j < rank; j++)
|
||||
printf("%d ", result[rank*i + j]);
|
||||
printf("\n");
|
||||
}
|
||||
*/
|
||||
|
||||
gsl_vector_free(startingVector);
|
||||
gsl_vector_free(i1);
|
||||
gsl_vector_free(i2);
|
||||
gsl_matrix_free(schlaefliMatrix);
|
||||
gsl_matrix_free(current_element);
|
||||
free(generators);
|
||||
free(elements);
|
||||
free(generators_data);
|
||||
free(elements_data);
|
||||
}
|
||||
20
old/coxeter.h
Normal file
20
old/coxeter.h
Normal file
@@ -0,0 +1,20 @@
|
||||
#ifndef COXETER_H
|
||||
#define COXETER_H
|
||||
|
||||
typedef struct {
|
||||
char series;
|
||||
int rank;
|
||||
} simple_type_t;
|
||||
|
||||
typedef struct {
|
||||
int n;
|
||||
simple_type_t *factors;
|
||||
} semisimple_type_t;
|
||||
|
||||
void generate_coxeter_graph(semisimple_type_t type, int *result);
|
||||
int coxeter_order(semisimple_type_t type);
|
||||
int coxeter_hyperplanes(semisimple_type_t type);
|
||||
int coxeter_rank(semisimple_type_t type);
|
||||
unsigned long opposition_involution(semisimple_type_t type, unsigned long theta);
|
||||
|
||||
#endif
|
||||
41
old/test.c
Normal file
41
old/test.c
Normal file
@@ -0,0 +1,41 @@
|
||||
#include <stdio.h>
|
||||
|
||||
#include "weyl.h"
|
||||
|
||||
static void print_element(weylgroup_element_t *e)
|
||||
{
|
||||
if(e->wordlength == 0)
|
||||
printf("1");
|
||||
else
|
||||
for(int j = 0; j < e->wordlength; j++)
|
||||
printf("%c", e->word[j] + 'a');
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
semisimple_type_t type;
|
||||
simple_type_t t;
|
||||
type.n = 1;
|
||||
type.factors = &t;
|
||||
t.series = 'A';
|
||||
t.rank = 3;
|
||||
|
||||
int order = weyl_order(type);
|
||||
doublequotient_t *dq = weyl_generate_bruhat(type, 0x02, 0x03);
|
||||
|
||||
for(int i = 0; i < dq->count; i++) {
|
||||
print_element(dq->cosets[i].min);
|
||||
printf(" -> ");
|
||||
for(doublecoset_list_t *current = dq->cosets[i].bruhat_lower; current; current = current->next) {
|
||||
print_element(current->to->min);
|
||||
printf(" ");
|
||||
}
|
||||
printf("| ");
|
||||
print_element(dq->cosets[i].opposite->min);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
weyl_destroy_bruhat(dq);
|
||||
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user