Mod graph by invariances
This commit is contained in:
parent
03854910b9
commit
993ccfd457
1
Makefile
1
Makefile
@ -1,5 +1,6 @@
|
||||
HEADERS=coxeter.h thickenings.h queue.h
|
||||
OPTIONS=-O3 -m64 -march=native -flto -funroll-loops -std=gnu99
|
||||
#OPTIONS=-O0 -g -std=gnu99
|
||||
|
||||
all: generate process
|
||||
|
||||
|
31
coxeter.c
31
coxeter.c
@ -176,6 +176,37 @@ int coxeter_hyperplanes(semisimple_type_t type)
|
||||
return hyperplanes;
|
||||
}
|
||||
|
||||
unsigned long opposition_involution(semisimple_type_t type, unsigned long theta)
|
||||
{
|
||||
int offset = 0;
|
||||
unsigned long result = 0;
|
||||
for(int i = 0; i < type.n; i++) {
|
||||
unsigned long current = (theta >> offset) & ((1 << type.factors[i].rank) - 1);
|
||||
unsigned long iota_current;
|
||||
|
||||
if(type.factors[i].series == 'B' || type.factors[i].series == 'C' || type.factors[i].series == 'F' || type.factors[i].series == 'G') {
|
||||
iota_current = current;
|
||||
} else if(type.factors[i].series == 'A') {
|
||||
iota_current = 0;
|
||||
for(int j = 0; j < type.factors[i].rank; j++)
|
||||
iota_current += ((current >> j) & 1) << (type.factors[i].rank - 1 - j);
|
||||
} else if(type.factors[i].series == 'D') {
|
||||
if(type.factors[i].rank % 2 == 0) {
|
||||
iota_current = current;
|
||||
} else {
|
||||
ERROR(1, "The opposition involution for type %c%d is not yet implemented!\n", type.factors[i].series, type.factors[i].rank);
|
||||
}
|
||||
} else if(type.factors[i].series == 'E') {
|
||||
ERROR(1, "The opposition involution for En is not yet implemented!\n");
|
||||
}
|
||||
|
||||
result += iota_current << offset;
|
||||
offset += type.factors[i].rank;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void generate_starting_vector(int rank, gsl_matrix *schlaefli, gsl_vector *result)
|
||||
{
|
||||
gsl_matrix *schlaefliLU = gsl_matrix_alloc(rank, rank);
|
||||
|
@ -15,5 +15,6 @@ void generate_coxeter_graph(semisimple_type_t type, int *result);
|
||||
int coxeter_order(semisimple_type_t type);
|
||||
int coxeter_hyperplanes(semisimple_type_t type);
|
||||
int coxeter_rank(semisimple_type_t type);
|
||||
unsigned long opposition_involution(semisimple_type_t type, unsigned long theta);
|
||||
|
||||
#endif
|
||||
|
69
generate.c
69
generate.c
@ -8,56 +8,62 @@
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
semisimple_type_t type;
|
||||
unsigned long right_invariance, left_invariance;
|
||||
int rank, order, hyperplanes, cosets;
|
||||
|
||||
// heap stuff
|
||||
node_t *graph;
|
||||
int *left, *right;
|
||||
edgelist_t *edgelists;
|
||||
int *words;
|
||||
|
||||
int rank, order;
|
||||
|
||||
char string_buffer1[1000];
|
||||
const char *alphabet = "abcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
// read arguments
|
||||
|
||||
ERROR(argc < 2, "Too few arguments!\n");
|
||||
|
||||
type.n = argc - 1;
|
||||
type.factors = (simple_type_t*)malloc((argc-1)*sizeof(simple_type_t));
|
||||
type.n = 0;
|
||||
for(int i = 0; i < argc - 1; i++) {
|
||||
if(argv[i+1][0] < 'A' || argv[i+1][0] > 'I')
|
||||
break;
|
||||
type.n++;
|
||||
}
|
||||
|
||||
type.factors = (simple_type_t*)malloc(type.n*sizeof(simple_type_t));
|
||||
for(int i = 0; i < type.n; i++) {
|
||||
type.factors[i].series = argv[i+1][0];
|
||||
type.factors[i].rank = argv[i+1][1] - '0';
|
||||
ERROR(argv[i+1][0] < 'A' || argv[i+1][0] > 'I' || argv[i+1][1] < '1' || argv[i+1][1] > '9', "Arguments must be Xn with X out of A-I and n out of 0-9\n");
|
||||
}
|
||||
|
||||
rank = coxeter_rank(type);
|
||||
order = coxeter_order(type);
|
||||
left_invariance = right_invariance = 0;
|
||||
|
||||
if(argc - type.n >= 3) {
|
||||
if(strcmp(argv[type.n + 1], "-") != 0)
|
||||
for(int i = 0; i < strlen(argv[type.n + 1]); i++)
|
||||
left_invariance |= (1 << (argv[type.n + 1][i] - 'a'));
|
||||
if(strcmp(argv[type.n + 2], "-") != 0)
|
||||
for(int i = 0; i < strlen(argv[type.n + 2]); i++)
|
||||
right_invariance |= (1 << (argv[type.n + 2][i] - 'a'));
|
||||
}
|
||||
|
||||
ERROR(strlen(alphabet) < rank, "The alphabet has too few letters\n");
|
||||
|
||||
// initialize
|
||||
|
||||
graph = (node_t*)malloc(order*sizeof(node_t));
|
||||
left = (int*)malloc(order*rank*sizeof(int));
|
||||
right = (int*)malloc(order*rank*sizeof(int));
|
||||
|
||||
for(int i = 0; i < order; i++) {
|
||||
graph[i].left = &left[rank*i];
|
||||
graph[i].right = &right[rank*i];
|
||||
}
|
||||
|
||||
// generate graph
|
||||
|
||||
prepare_graph(type, graph, &edgelists, &words);
|
||||
graph = graph_alloc(type);
|
||||
cosets = prepare_simplified_graph(type, left_invariance, right_invariance, graph);
|
||||
|
||||
ERROR(cosets < 0, "The left invariance is not preserved by the opposition involution: %d %d!\n", left_invariance, opposition_involution(type, left_invariance));
|
||||
|
||||
// print stuff
|
||||
|
||||
int hyperplane_count = coxeter_hyperplanes(type);
|
||||
rank = coxeter_rank(type); // number of simple roots
|
||||
order = coxeter_order(type); // number of Weyl group elements
|
||||
hyperplanes = coxeter_hyperplanes(type); // number of positive roots
|
||||
|
||||
fprintf(stderr, "Rank: %d\t\tOrder: %d\t\tHyperplanes: %d\n", rank, order, hyperplane_count);
|
||||
fprintf(stderr, "Rank: %d\tOrder: %d\tPositive Roots: %d\tCosets: %d\n", rank, order, hyperplanes, cosets);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "Group elements: \n");
|
||||
for(int i = 0, wl = 0; i < order; i++) {
|
||||
fprintf(stderr, "Shortest coset representatives: \n");
|
||||
for(int i = 0, wl = 0; i < cosets; i++) {
|
||||
if(i == 0) {
|
||||
fprintf(stderr, "1");
|
||||
} else if(graph[i].wordlength > wl) {
|
||||
@ -72,16 +78,15 @@ int main(int argc, const char *argv[])
|
||||
|
||||
fwrite(&type.n, sizeof(int), 1, stdout);
|
||||
fwrite(type.factors, sizeof(simple_type_t), type.n, stdout);
|
||||
long count = enumerate_balanced_thickenings(type, graph, order, alphabet, stdout);
|
||||
fwrite(&left_invariance, sizeof(unsigned long), type.n, stdout);
|
||||
fwrite(&right_invariance, sizeof(unsigned long), type.n, stdout);
|
||||
|
||||
long count = enumerate_balanced_thickenings(type, graph, cosets, alphabet, stdout);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "Found %ld balanced thickenings\n\n", count);
|
||||
|
||||
free(graph);
|
||||
free(left);
|
||||
free(right);
|
||||
free(edgelists);
|
||||
free(words);
|
||||
graph_free(type, graph);
|
||||
free(type.factors);
|
||||
|
||||
return 0;
|
||||
|
193
process-old.c
Normal file
193
process-old.c
Normal file
@ -0,0 +1,193 @@
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include "thickenings.h"
|
||||
#include "coxeter.h"
|
||||
#include "queue.h"
|
||||
|
||||
#define SWAP(t, a, b) do {t tmp = a; a = b; b = tmp;} while(0)
|
||||
|
||||
char *stringify_SLn1_permutation(int *word, int wordlength, int rank, char *str)
|
||||
{
|
||||
for(int i = 0; i <= rank; i++)
|
||||
str[i] = '1' + i;
|
||||
str[rank+1] = 0;
|
||||
|
||||
for(int i = 0; i < wordlength; i++) {
|
||||
char tmp = str[word[i]];
|
||||
str[word[i]] = str[word[i]+1];
|
||||
str[word[i]+1] = tmp;
|
||||
}
|
||||
return str;
|
||||
}
|
||||
|
||||
|
||||
char *stringify_Onn1_permutation(int *word, int wordlength, int rank, char *str)
|
||||
{
|
||||
for(int i = 0; i <= rank*2; i++)
|
||||
str[i] = '1' + i;
|
||||
str[2*rank+1] = 0;
|
||||
|
||||
for(int i = 0; i < wordlength; i++) {
|
||||
if(word[i] == 0)
|
||||
SWAP(char, str[rank-1], str[rank+1]);
|
||||
else {
|
||||
SWAP(char, str[rank-word[i]], str[rank-word[i]-1]);
|
||||
SWAP(char, str[rank+word[i]], str[rank+word[i]+1]);
|
||||
}
|
||||
}
|
||||
return str;
|
||||
}
|
||||
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
FILE *infile;
|
||||
struct stat st;
|
||||
int rank, order, hyperplanes;
|
||||
semisimple_type_t type;
|
||||
int n;
|
||||
signed char *level;
|
||||
node_t *graph;
|
||||
int *left, *right;
|
||||
int left_invariant, right_invariant;
|
||||
int left_invariant_wanted = 0, right_invariant_wanted = 0;
|
||||
|
||||
unsigned long left_invariance, right_invariance;
|
||||
edgelist_t *edgelists;
|
||||
int *words;
|
||||
|
||||
queue_t queue;
|
||||
int current;
|
||||
int *seen;
|
||||
int *generators;
|
||||
int ngens;
|
||||
|
||||
char string_buffer1[1000];
|
||||
const char *alphabet = "abcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
// parse arguments
|
||||
|
||||
if(argc < 2)
|
||||
infile = stdin;
|
||||
else {
|
||||
if(strcmp(argv[1], "-") == 0)
|
||||
infile = stdin;
|
||||
else
|
||||
infile = fopen(argv[1], "rb");
|
||||
|
||||
if(argc >= 4) {
|
||||
if(strcmp(argv[2], "-") != 0)
|
||||
for(int i = 0; i < strlen(argv[2]); i++)
|
||||
left_invariant_wanted |= (1 << (argv[2][i] - 'a'));
|
||||
if(strcmp(argv[3], "-") != 0)
|
||||
for(int i = 0; i < strlen(argv[3]); i++)
|
||||
right_invariant_wanted |= (1 << (argv[3][i] - 'a'));
|
||||
}
|
||||
}
|
||||
|
||||
fread(&type.n, sizeof(int), 1, infile); // we completely trust the input data
|
||||
type.factors = malloc(type.n * sizeof(simple_type_t));
|
||||
fread(type.factors, sizeof(simple_type_t), type.n, infile);
|
||||
fread(&left_invariance, sizeof(simple_type_t), type.n, infile);
|
||||
fread(&right_invariance, sizeof(simple_type_t), type.n, infile);
|
||||
|
||||
// get graph
|
||||
|
||||
rank = coxeter_rank(type);
|
||||
order = coxeter_order(type);
|
||||
hyperplanes = coxeter_hyperplanes(type);
|
||||
ERROR(strlen(alphabet) < rank, "The alphabet has too few letters\n");
|
||||
seen = (int*)malloc(order*sizeof(int));
|
||||
generators = (int*)malloc(order*sizeof(int));
|
||||
level = (signed char*)malloc(order*sizeof(int));
|
||||
|
||||
graph = graph_alloc(type);
|
||||
prepare_graph(type, graph);
|
||||
|
||||
// finally do stuff
|
||||
|
||||
int counter = 0;
|
||||
|
||||
while(fread(level, sizeof(signed char), order, infile) == order) {
|
||||
|
||||
/*
|
||||
if((counter++) % 100000 == 0)
|
||||
print_thickening(rank, order, level, 0, 0, 0, alphabet, stdout);
|
||||
continue;
|
||||
*/
|
||||
|
||||
left_invariant = right_invariant = -1; // all 1s
|
||||
for(int j = 0; j < order; j++) {
|
||||
for(int k = 0; k < rank; k++) {
|
||||
if(level[j] > 0 && level[graph[j].left[k]] < 0 || level[j] < 0 && level[graph[j].left[k]] > 0) {
|
||||
left_invariant &= ~(1 << k);
|
||||
}
|
||||
if(level[j] > 0 && level[graph[j].right[k]] < 0 || level[j] < 0 && level[graph[j].right[k]] > 0) {
|
||||
right_invariant &= ~(1 << k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if((~left_invariant & left_invariant_wanted) == 0 && (~right_invariant & right_invariant_wanted) == 0) {
|
||||
ngens = 0;
|
||||
memset(generators, 0, order*sizeof(int));
|
||||
for(int j = 0; j < order; j++) {
|
||||
if(level[j] == HEAD_MARKER && generators[j] == 0) { // ignore the generator, if it is equivalent to one already seen
|
||||
ngens++;
|
||||
queue_init(&queue);
|
||||
queue_put(&queue, j);
|
||||
while((current = queue_get(&queue)) != -1) {
|
||||
if(generators[current] == 0) { // visit everyone only once
|
||||
generators[current] = ngens;
|
||||
for(int k = 0; k < rank; k++) {
|
||||
if(left_invariant & (1 << k))
|
||||
queue_put(&queue, graph[current].left[k]);
|
||||
if(right_invariant & (1 << k))
|
||||
queue_put(&queue, graph[current].right[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
printf("left: ");
|
||||
for(int j = 0; j < rank; j++)
|
||||
printf("%c", left_invariant & (1 << j) ? alphabet[j] : ' ');
|
||||
printf(" right: ");
|
||||
for(int j = 0; j < rank; j++)
|
||||
printf("%c", right_invariant & (1 << j) ? alphabet[j] : ' ');
|
||||
printf(" generators: ");
|
||||
|
||||
memset(seen, 0, order*sizeof(int));
|
||||
for(int i = 0; i < order; i++) {
|
||||
if(generators[i] != 0 && seen[generators[i]-1] == 0) {
|
||||
seen[generators[i]-1] = 1;
|
||||
// if(type.n == 1 && type.factors[0].series == 'A')
|
||||
// printf("%s ", stringify_SLn1_permutation(graph[i].word, graph[i].wordlength, rank, string_buffer1));
|
||||
// else if(type.n == 1 && (type.factors[0].series == 'B' || type.factors[0].series == 'C'))
|
||||
// printf("%s ", stringify_Onn1_permutation(graph[i].word, graph[i].wordlength, rank, string_buffer1));
|
||||
// else
|
||||
if(i == 0)
|
||||
printf("1 ");
|
||||
else
|
||||
printf("%s ", alphabetize(graph[i].word, graph[i].wordlength, alphabet, string_buffer1));
|
||||
}
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
if(infile != stdin)
|
||||
fclose(infile);
|
||||
|
||||
// cleanup
|
||||
|
||||
graph_free(type, graph);
|
||||
free(seen);
|
||||
free(generators);
|
||||
free(type.factors);
|
||||
|
||||
return 0;
|
||||
}
|
194
process.c
194
process.c
@ -6,105 +6,117 @@
|
||||
#include "coxeter.h"
|
||||
#include "queue.h"
|
||||
|
||||
#define SWAP(t, a, b) do {t tmp = a; a = b; b = tmp;} while(0)
|
||||
|
||||
char *stringify_SLn1_permutation(int *word, int wordlength, int rank, char *str)
|
||||
{
|
||||
for(int i = 0; i <= rank; i++)
|
||||
str[i] = '1' + i;
|
||||
str[rank+1] = 0;
|
||||
|
||||
for(int i = 0; i < wordlength; i++) {
|
||||
char tmp = str[word[i]];
|
||||
str[word[i]] = str[word[i]+1];
|
||||
str[word[i]+1] = tmp;
|
||||
}
|
||||
return str;
|
||||
}
|
||||
|
||||
|
||||
char *stringify_Onn1_permutation(int *word, int wordlength, int rank, char *str)
|
||||
{
|
||||
for(int i = 0; i <= rank*2; i++)
|
||||
str[i] = '1' + i;
|
||||
str[2*rank+1] = 0;
|
||||
|
||||
for(int i = 0; i < wordlength; i++) {
|
||||
if(word[i] == 0)
|
||||
SWAP(char, str[rank-1], str[rank+1]);
|
||||
else {
|
||||
SWAP(char, str[rank-word[i]], str[rank-word[i]-1]);
|
||||
SWAP(char, str[rank+word[i]], str[rank+word[i]+1]);
|
||||
}
|
||||
}
|
||||
return str;
|
||||
}
|
||||
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
FILE *infile;
|
||||
struct stat st;
|
||||
int rank, order;
|
||||
semisimple_type_t type;
|
||||
int n;
|
||||
int *thickenings;
|
||||
signed char *level;
|
||||
unsigned long left_invariance, right_invariance; // these are the invariances we have already modded out
|
||||
unsigned long left_invariant, right_invariant; // these are the invariances of the thickening under consideration
|
||||
int rank, cosets;
|
||||
node_t *graph;
|
||||
int *left, *right;
|
||||
int left_invariant, right_invariant;
|
||||
int left_invariant_wanted = 0, right_invariant_wanted = 0;
|
||||
edgelist_t *edgelists;
|
||||
int *words;
|
||||
|
||||
signed char *thickening;
|
||||
int *seen, *generators;
|
||||
queue_t queue;
|
||||
int ngenerators;
|
||||
int current;
|
||||
int *seen;
|
||||
int *generators;
|
||||
int ngens;
|
||||
|
||||
char string_buffer1[1000];
|
||||
const char *alphabet = "abcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
// parse arguments
|
||||
|
||||
if(argc < 2)
|
||||
infile = stdin;
|
||||
else {
|
||||
if(strcmp(argv[1], "-") == 0)
|
||||
infile = stdin;
|
||||
else
|
||||
infile = fopen(argv[1], "rb");
|
||||
else
|
||||
infile = fopen(argv[1], "rb");
|
||||
|
||||
if(argc >= 4) {
|
||||
if(strcmp(argv[2], "-") != 0)
|
||||
for(int i = 0; i < strlen(argv[2]); i++)
|
||||
left_invariant_wanted |= (1 << (argv[2][i] - 'a'));
|
||||
if(strcmp(argv[3], "-") != 0)
|
||||
for(int i = 0; i < strlen(argv[3]); i++)
|
||||
right_invariant_wanted |= (1 << (argv[3][i] - 'a'));
|
||||
}
|
||||
}
|
||||
|
||||
fread(&type.n, sizeof(int), 1, infile); // we completely trust the input data
|
||||
// we completely trust the input data
|
||||
ERROR(fread(&type.n, sizeof(int), 1, infile) == 0, "The input file seems to be empty!\n");
|
||||
type.factors = malloc(type.n * sizeof(simple_type_t));
|
||||
fread(type.factors, sizeof(simple_type_t), type.n, infile);
|
||||
|
||||
// get graph
|
||||
fread(&left_invariance, sizeof(simple_type_t), type.n, infile);
|
||||
fread(&right_invariance, sizeof(simple_type_t), type.n, infile);
|
||||
|
||||
rank = coxeter_rank(type);
|
||||
order = coxeter_order(type);
|
||||
ERROR(strlen(alphabet) < rank, "The alphabet has too few letters\n");
|
||||
graph = (node_t*)malloc(order*sizeof(node_t));
|
||||
left = (int*)malloc(order*rank*sizeof(int));
|
||||
right = (int*)malloc(order*rank*sizeof(int));
|
||||
graph = graph_alloc(type);
|
||||
cosets = prepare_simplified_graph(type, left_invariance, right_invariance, graph);
|
||||
|
||||
thickening = (signed char*)malloc(cosets*sizeof(signed char));
|
||||
generators = (int*)malloc(cosets*sizeof(int));
|
||||
seen = (int*)malloc(cosets*sizeof(int));
|
||||
|
||||
while(fread(thickening, sizeof(signed char), cosets, infile) == cosets) {
|
||||
|
||||
// determine invariances of this thickening
|
||||
left_invariant = right_invariant = -1; // set all bits to 1
|
||||
for(int j = 0; j < cosets; j++) {
|
||||
for(int k = 0; k < rank; k++) {
|
||||
if(thickening[j] > 0 && thickening[graph[j].left[k]] < 0 ||
|
||||
thickening[j] < 0 && thickening[graph[j].left[k]] > 0)
|
||||
left_invariant &= ~(1 << k);
|
||||
if(thickening[j] > 0 && thickening[graph[j].right[k]] < 0 ||
|
||||
thickening[j] < 0 && thickening[graph[j].right[k]] > 0)
|
||||
right_invariant &= ~(1 << k);
|
||||
}
|
||||
}
|
||||
|
||||
// print this stuff
|
||||
printf("left: ");
|
||||
for(int j = 0; j < rank; j++)
|
||||
printf("%c", left_invariant & (1 << j) ? alphabet[j] : ' ');
|
||||
printf(" right: ");
|
||||
for(int j = 0; j < rank; j++)
|
||||
printf("%c", right_invariant & (1 << j) ? alphabet[j] : ' ');
|
||||
printf(" generators: ");
|
||||
|
||||
// find a minimal set of weyl group elements such that the union of the ideals generated by their cosets wrt the invariances determined above gives the thickening
|
||||
// in the first step, mark everything which is equivalent to a "head" by a generator id
|
||||
ngenerators = 0;
|
||||
memset(generators, 0, cosets*sizeof(int));
|
||||
for(int j = 0; j < cosets; j++) {
|
||||
if(thickening[j] == HEAD_MARKER && generators[j] == 0) { // ignore the generator, if it is equivalent to one already seen
|
||||
ngenerators++;
|
||||
queue_init(&queue);
|
||||
queue_put(&queue, j);
|
||||
while((current = queue_get(&queue)) != -1) {
|
||||
if(generators[current] == 0) { // visit everyone only once
|
||||
generators[current] = ngenerators;
|
||||
for(int k = 0; k < rank; k++) {
|
||||
if(left_invariant & (1 << k))
|
||||
queue_put(&queue, graph[current].left[k]);
|
||||
if(right_invariant & (1 << k))
|
||||
queue_put(&queue, graph[current].right[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// in the second step, go through the list in ascending word length order and print the first appearance of each generator id
|
||||
memset(seen, 0, cosets*sizeof(int));
|
||||
for(int i = 0; i < cosets; i++) {
|
||||
if(generators[i] != 0 && seen[generators[i]-1] == 0) {
|
||||
seen[generators[i]-1] = 1;
|
||||
printf("%s ", alphabetize(graph[i].word, graph[i].wordlength, alphabet, string_buffer1));
|
||||
}
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
if(infile != stdin)
|
||||
fclose(infile);
|
||||
|
||||
graph_free(type, graph);
|
||||
free(type.factors);
|
||||
free(thickening);
|
||||
}
|
||||
/*******************************************************************************************
|
||||
|
||||
seen = (int*)malloc(order*sizeof(int));
|
||||
generators = (int*)malloc(order*sizeof(int));
|
||||
level = (signed char*)malloc(order*sizeof(int));
|
||||
for(int i = 0; i < order; i++) {
|
||||
graph[i].left = &left[i*rank];
|
||||
graph[i].right = &right[i*rank];
|
||||
}
|
||||
prepare_graph(type, graph, &edgelists, &words);
|
||||
|
||||
graph = graph_alloc(type);
|
||||
prepare_graph(type, graph);
|
||||
|
||||
// finally do stuff
|
||||
|
||||
@ -112,24 +124,6 @@ int main(int argc, const char *argv[])
|
||||
|
||||
while(fread(level, sizeof(signed char), order, infile) == order) {
|
||||
|
||||
/*
|
||||
if((counter++) % 100000 == 0)
|
||||
print_thickening(rank, order, level, 0, 0, 0, alphabet, stdout);
|
||||
continue;
|
||||
*/
|
||||
|
||||
left_invariant = right_invariant = -1; // all 1s
|
||||
for(int j = 0; j < order; j++) {
|
||||
for(int k = 0; k < rank; k++) {
|
||||
if(level[j] > 0 && level[graph[j].left[k]] < 0 || level[j] < 0 && level[graph[j].left[k]] > 0) {
|
||||
left_invariant &= ~(1 << k);
|
||||
}
|
||||
if(level[j] > 0 && level[graph[j].right[k]] < 0 || level[j] < 0 && level[graph[j].right[k]] > 0) {
|
||||
right_invariant &= ~(1 << k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if((~left_invariant & left_invariant_wanted) == 0 && (~right_invariant & right_invariant_wanted) == 0) {
|
||||
ngens = 0;
|
||||
memset(generators, 0, order*sizeof(int));
|
||||
@ -185,15 +179,11 @@ int main(int argc, const char *argv[])
|
||||
|
||||
// cleanup
|
||||
|
||||
free(thickenings);
|
||||
free(edgelists);
|
||||
free(words);
|
||||
free(graph);
|
||||
free(left);
|
||||
free(right);
|
||||
graph_free(type, graph);
|
||||
free(seen);
|
||||
free(generators);
|
||||
free(type.factors);
|
||||
|
||||
return 0;
|
||||
}
|
||||
*/
|
||||
|
2
queue.h
2
queue.h
@ -4,7 +4,7 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define QUEUE_SIZE 2000
|
||||
#define QUEUE_SIZE 5000
|
||||
|
||||
#define ERROR(condition, msg, ...) if(condition){fprintf(stderr, msg, ##__VA_ARGS__); exit(1);}
|
||||
|
||||
|
55
test.c
55
test.c
@ -24,6 +24,60 @@ edgelist_t *edgelist_add(edgelist_t *list, int new, edgelist_t *storage, int *st
|
||||
return new_link;
|
||||
}
|
||||
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
unsigned long left_invariance = atoi(argv[2]);
|
||||
unsigned long right_invariance = atoi(argv[3]);
|
||||
semisimple_type_t type;
|
||||
type.n = 1;
|
||||
type.factors = (simple_type_t*)malloc(type.n*sizeof(simple_type_t));
|
||||
type.factors[0].series = 'B';
|
||||
type.factors[0].rank = atoi(argv[1]);
|
||||
|
||||
char alphabet[] = "abcdefghijklmnopqrstuvwxyz";
|
||||
char buffer[1024], buffer2[1024];
|
||||
|
||||
node_t *graph;
|
||||
int *leftbuf, *rightbuf;
|
||||
edgelist_t *edgelists;
|
||||
int *words;
|
||||
int rank, order, hyperplanes, cosets;
|
||||
|
||||
// initialize
|
||||
|
||||
rank = coxeter_rank(type);
|
||||
order = coxeter_order(type);
|
||||
hyperplanes = coxeter_hyperplanes(type);
|
||||
|
||||
graph = (node_t*)malloc(order*sizeof(node_t));
|
||||
leftbuf = (int*)malloc(order*rank*sizeof(int));
|
||||
rightbuf = (int*)malloc(order*rank*sizeof(int));
|
||||
edgelists = (edgelist_t*)malloc(4*order*hyperplanes*sizeof(edgelist_t));
|
||||
words = (int*)malloc(order*hyperplanes*sizeof(int));
|
||||
|
||||
for(int i = 0; i < order; i++) {
|
||||
graph[i].left = &leftbuf[rank*i];
|
||||
graph[i].right = &rightbuf[rank*i];
|
||||
}
|
||||
|
||||
// generate graph
|
||||
|
||||
cosets = prepare_simplified_graph(type, left_invariance, right_invariance, graph, edgelists, words);
|
||||
|
||||
// do something
|
||||
|
||||
fprintf(stderr, "There are %d double cosets.\n", cosets);
|
||||
|
||||
// cleanup
|
||||
|
||||
free(leftbuf);
|
||||
free(rightbuf);
|
||||
free(graph);
|
||||
free(edgelists);
|
||||
free(words);
|
||||
}
|
||||
|
||||
/*
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
semisimple_type_t type;
|
||||
@ -245,3 +299,4 @@ int main(int argc, const char *argv[])
|
||||
|
||||
return 0;
|
||||
}
|
||||
*/
|
||||
|
319
thickenings.c
319
thickenings.c
@ -57,24 +57,28 @@ static int compare_wordlength(const void *a, const void *b, void *gr)
|
||||
return graph[i].wordlength - graph[j].wordlength;
|
||||
}
|
||||
|
||||
void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists_pointer, int **words_pointer) // the edgelists_pointer and words_pointer arguments are just for freeing afterwards
|
||||
void prepare_graph(semisimple_type_t type, node_t *graph)
|
||||
{
|
||||
queue_t queue;
|
||||
|
||||
int rank, order;
|
||||
edgelist_t *edgelists_lower, *edgelists_higher;
|
||||
int rank, order, hyperplanes;
|
||||
edgelist_t *edge, *previous;
|
||||
int edgelist_count, max_wordlength, hyperplane_count;
|
||||
int edgelist_count, hyperplane_count;
|
||||
int current;
|
||||
|
||||
int *graph_data;
|
||||
node_t *graph_unsorted;
|
||||
int *wordlength_order, *reverse_wordlength_order, *seen, *words;
|
||||
edgelist_t *edgelists;
|
||||
int *wordlength_order, *reverse_wordlength_order, *seen;
|
||||
|
||||
// initialize
|
||||
|
||||
rank = coxeter_rank(type);
|
||||
order = coxeter_order(type);
|
||||
hyperplanes = coxeter_hyperplanes(type);
|
||||
|
||||
edgelists_higher = graph[0].bruhat_higher;
|
||||
edgelists_lower = &graph[0].bruhat_higher[order*hyperplanes/2];
|
||||
|
||||
graph_data = (int*)malloc(order*rank*sizeof(int));
|
||||
graph_unsorted = (node_t*)malloc(order*sizeof(node_t));
|
||||
@ -83,13 +87,10 @@ void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists
|
||||
seen = (int*)malloc(order*sizeof(int));
|
||||
|
||||
for(int i = 0; i < order; i++) {
|
||||
graph_unsorted[i].left = graph[i].left;
|
||||
graph_unsorted[i].right = graph[i].right;
|
||||
graph_unsorted[i].word = 0;
|
||||
graph_unsorted[i].wordlength = INT_MAX;
|
||||
graph_unsorted[i].bruhat_lower = 0;
|
||||
graph_unsorted[i].bruhat_higher = 0;
|
||||
graph_unsorted[i].is_hyperplane_reflection = 0;
|
||||
graph[i].bruhat_lower = 0;
|
||||
graph[i].bruhat_higher = 0;
|
||||
graph[i].is_hyperplane_reflection = 0;
|
||||
}
|
||||
|
||||
// get coxeter graph
|
||||
@ -98,7 +99,7 @@ void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists
|
||||
|
||||
for(int i = 0; i < order; i++)
|
||||
for(int j = 0; j < rank; j++)
|
||||
graph_unsorted[i].left[j] = graph_data[i*rank + j];
|
||||
graph_unsorted[i].left = &graph_data[i*rank];
|
||||
|
||||
// find wordlengths
|
||||
|
||||
@ -115,11 +116,6 @@ void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists
|
||||
}
|
||||
}
|
||||
|
||||
max_wordlength = 0;
|
||||
for(int i = 0; i < order; i++)
|
||||
if(graph_unsorted[i].wordlength > max_wordlength)
|
||||
max_wordlength = graph_unsorted[i].wordlength;
|
||||
|
||||
// sort by wordlength
|
||||
|
||||
for(int i = 0; i < order; i++)
|
||||
@ -128,23 +124,22 @@ void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists
|
||||
for(int i = 0; i < order; i++)
|
||||
reverse_wordlength_order[wordlength_order[i]] = i; // reverse_wordlength_order is a map old index -> new index
|
||||
for(int i = 0; i < order; i++) {
|
||||
graph[i] = graph_unsorted[wordlength_order[i]]; // copy the whole thing
|
||||
// we have only set left and wordlength so far, so just copy these
|
||||
graph[i].wordlength = graph_unsorted[wordlength_order[i]].wordlength;
|
||||
for(int j = 0; j < rank; j++)
|
||||
graph[i].left[j] = reverse_wordlength_order[graph[i].left[j]]; // rewrite references
|
||||
graph[i].left[j] = reverse_wordlength_order[graph_unsorted[wordlength_order[i]].left[j]]; // rewrite references
|
||||
}
|
||||
|
||||
// find words
|
||||
|
||||
words = (int*)malloc(order*max_wordlength*sizeof(int));
|
||||
memset(words, 0, order*max_wordlength*sizeof(int));
|
||||
graph[0].word = &words[0];
|
||||
for(int i = 0; i < order; i++)
|
||||
memset(graph[i].word, 0, hyperplanes*sizeof(int));
|
||||
queue_init(&queue);
|
||||
queue_put(&queue, 0);
|
||||
while((current = queue_get(&queue)) != -1) {
|
||||
for(int i = 0; i < rank; i++) {
|
||||
int neighbor = graph[current].left[i];
|
||||
if(graph[neighbor].wordlength == graph[current].wordlength + 1 && graph[neighbor].word == 0) {
|
||||
graph[neighbor].word = &words[neighbor*max_wordlength];
|
||||
if(graph[neighbor].wordlength == graph[current].wordlength + 1 && graph[neighbor].word[0] == 0) {
|
||||
memcpy(&graph[neighbor].word[1], &graph[current].word[0], graph[current].wordlength*sizeof(int));
|
||||
graph[neighbor].word[0] = i;
|
||||
queue_put(&queue, neighbor);
|
||||
@ -197,7 +192,6 @@ void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists
|
||||
|
||||
// generate folding order
|
||||
|
||||
edgelists = (edgelist_t*)malloc(order*hyperplane_count*sizeof(edgelist_t));
|
||||
edgelist_count = 0;
|
||||
for(int i = 0; i < order; i++) {
|
||||
if(graph[i].is_hyperplane_reflection) {
|
||||
@ -208,9 +202,9 @@ void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists
|
||||
current = graph[current].left[graph[i].word[k]];
|
||||
|
||||
if(graph[j].wordlength < graph[current].wordlength) { // current has higher bruhat order than j
|
||||
edgelists[edgelist_count].to = j;
|
||||
edgelists[edgelist_count].next = graph[current].bruhat_lower;
|
||||
graph[current].bruhat_lower = &edgelists[edgelist_count];
|
||||
edgelists_lower[edgelist_count].to = j;
|
||||
edgelists_lower[edgelist_count].next = graph[current].bruhat_lower;
|
||||
graph[current].bruhat_lower = &edgelists_lower[edgelist_count];
|
||||
edgelist_count++;
|
||||
} else if(graph[j].wordlength > graph[current].wordlength) { // j has higher bruhat order than current; these are already included from the other side
|
||||
} else {
|
||||
@ -263,20 +257,18 @@ void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists
|
||||
|
||||
// reverse folding order
|
||||
|
||||
edgelist_count = 0;
|
||||
for(int i = 0; i < order; i++) {
|
||||
edge = graph[i].bruhat_lower;
|
||||
while(edge) {
|
||||
edgelists[edgelist_count].to = i;
|
||||
edgelists[edgelist_count].next = graph[edge->to].bruhat_higher;
|
||||
graph[edge->to].bruhat_higher = &edgelists[edgelist_count];
|
||||
edgelists_higher[edgelist_count].to = i;
|
||||
edgelists_higher[edgelist_count].next = graph[edge->to].bruhat_higher;
|
||||
graph[edge->to].bruhat_higher = &edgelists_higher[edgelist_count];
|
||||
edgelist_count++;
|
||||
edge = edge->next;
|
||||
}
|
||||
}
|
||||
|
||||
*edgelists_pointer = edgelists;
|
||||
*words_pointer = words;
|
||||
|
||||
free(graph_data);
|
||||
free(graph_unsorted);
|
||||
free(wordlength_order);
|
||||
@ -284,6 +276,264 @@ void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists
|
||||
free(seen);
|
||||
}
|
||||
|
||||
static int edgelist_contains(edgelist_t *list, int x) {
|
||||
while(list) {
|
||||
if(list->to == x)
|
||||
return 1;
|
||||
list = list->next;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static edgelist_t *edgelist_add(edgelist_t *list, int new, edgelist_t *storage, int *storage_index)
|
||||
{
|
||||
edgelist_t *new_link = &storage[*storage_index];
|
||||
new_link->next = list;
|
||||
new_link->to = new;
|
||||
(*storage_index)++;
|
||||
return new_link;
|
||||
}
|
||||
|
||||
int prepare_simplified_graph(semisimple_type_t type, unsigned long left, unsigned long right, node_t *simplified_graph)
|
||||
{
|
||||
node_t *full_graph;
|
||||
int edgelists_used;
|
||||
int rank, order, hyperplanes;
|
||||
int *reduced, *group, *simplified;
|
||||
int *seen;
|
||||
int current;
|
||||
edgelist_t *edge, *previous;
|
||||
queue_t queue;
|
||||
int ncosets;
|
||||
|
||||
if(opposition_involution(type, left) != left)
|
||||
return -1;
|
||||
|
||||
edgelist_t *edgelists_higher = &simplified_graph[0].bruhat_higher[0];
|
||||
edgelist_t *edgelists_lower = &simplified_graph[0].bruhat_higher[order*hyperplanes/2];
|
||||
|
||||
// get full graph
|
||||
|
||||
full_graph = graph_alloc(type);
|
||||
prepare_graph(type, full_graph);
|
||||
|
||||
// initialize stuff
|
||||
|
||||
rank = coxeter_rank(type);
|
||||
order = coxeter_order(type);
|
||||
hyperplanes = coxeter_hyperplanes(type);
|
||||
|
||||
reduced = (int*)malloc(order*sizeof(int));
|
||||
group = (int*)malloc(order*sizeof(int));
|
||||
simplified = (int*)malloc(order*sizeof(int));
|
||||
for(int i = 0; i < order; i++) {
|
||||
group[i] = -1;
|
||||
reduced[i] = i;
|
||||
}
|
||||
|
||||
// step 1: group
|
||||
for(int i = 0; i < order; i++) {
|
||||
if(group[i] != -1)
|
||||
continue;
|
||||
|
||||
queue_init(&queue);
|
||||
queue_put(&queue, i);
|
||||
while((current = queue_get(&queue)) != -1) {
|
||||
if(group[current] != -1)
|
||||
continue;
|
||||
group[current] = i;
|
||||
|
||||
for(int j = 0; j < rank; j++) {
|
||||
if(left & (1 << j))
|
||||
queue_put(&queue, full_graph[current].left[j]);
|
||||
if(right & (1 << j))
|
||||
queue_put(&queue, full_graph[current].right[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// step 2: find minimum
|
||||
for(int i = 0; i < order; i++)
|
||||
if(full_graph[i].wordlength < full_graph[reduced[group[i]]].wordlength)
|
||||
reduced[group[i]] = i;
|
||||
|
||||
// step 3: assign minimum to all
|
||||
for(int i = 0; i < order; i++)
|
||||
reduced[i] = reduced[group[i]];
|
||||
|
||||
// step 4: assign indices to cosets
|
||||
ncosets = 0;
|
||||
for(int i = 0; i < order; i++)
|
||||
if(reduced[i] == i)
|
||||
simplified[i] = ncosets++;
|
||||
|
||||
for(int i = 0; i < order; i++)
|
||||
simplified[i] = simplified[reduced[i]];
|
||||
|
||||
// fprintf(stderr, "Number of double cosets: %d\n\n", ncosets);
|
||||
|
||||
// simplified_graph = (node_t*) malloc(ncosets*sizeof(node_t));
|
||||
seen = (int*) malloc(ncosets*sizeof(int));
|
||||
edgelists_used = 0;
|
||||
|
||||
// step 5: set up nodes from minima
|
||||
current = 0;
|
||||
for(int i = 0; i < order; i++)
|
||||
if(reduced[i] == i) { // is minimum
|
||||
memcpy(simplified_graph[simplified[i]].word, full_graph[i].word, full_graph[i].wordlength*sizeof(int));
|
||||
simplified_graph[simplified[i]].wordlength = full_graph[i].wordlength;
|
||||
simplified_graph[simplified[i]].opposite = simplified[full_graph[i].opposite];
|
||||
simplified_graph[simplified[i]].bruhat_lower = (edgelist_t*)0;
|
||||
simplified_graph[simplified[i]].bruhat_higher = (edgelist_t*)0;
|
||||
for(int j = 0; j < rank; j++) {
|
||||
simplified_graph[simplified[i]].left[j] = simplified[full_graph[i].left[j]];
|
||||
simplified_graph[simplified[i]].right[j] = simplified[full_graph[i].right[j]];
|
||||
}
|
||||
}
|
||||
|
||||
// step 6: find order relations
|
||||
for(int i = 0; i < order; i++) {
|
||||
edge = full_graph[i].bruhat_lower;
|
||||
while(edge) {
|
||||
int this = simplified[i];
|
||||
int that = simplified[edge->to];
|
||||
if(this != that) {
|
||||
// found something
|
||||
if(!edgelist_contains(simplified_graph[this].bruhat_lower, that))
|
||||
simplified_graph[this].bruhat_lower = edgelist_add(simplified_graph[this].bruhat_lower, that, edgelists_lower, &edgelists_used);
|
||||
ERROR(simplified_graph[this].wordlength <= simplified_graph[that].wordlength, "The order assumption is being violated!\n");
|
||||
}
|
||||
edge = edge->next;
|
||||
}
|
||||
}
|
||||
|
||||
// step 7: remove redundant edges
|
||||
for(int i = 0; i < ncosets; i++) {
|
||||
memset(seen, 0, ncosets*sizeof(int));
|
||||
queue_init(&queue);
|
||||
|
||||
for(int len = 1; len <= simplified_graph[i].wordlength; len++) {
|
||||
edge = simplified_graph[i].bruhat_lower;
|
||||
previous = (edgelist_t*)0;
|
||||
|
||||
while(edge) {
|
||||
// only look at edges of this length now
|
||||
if(simplified_graph[i].wordlength - simplified_graph[edge->to].wordlength != len) {
|
||||
// we only consider edges of length len in this pass
|
||||
previous = edge;
|
||||
} else if(seen[edge->to]) {
|
||||
// this edge is redundant, remove it
|
||||
// fprintf(stderr, "removing edge from %d to %d\n", i, edge->to);
|
||||
if(previous)
|
||||
previous->next = edge->next;
|
||||
else
|
||||
simplified_graph[i].bruhat_lower = edge->next;
|
||||
} else {
|
||||
// this edge was not redundant, add to seen
|
||||
previous = edge;
|
||||
seen[edge->to] = 1;
|
||||
queue_put(&queue, edge->to);
|
||||
}
|
||||
edge = edge->next;
|
||||
}
|
||||
|
||||
// calculate transitive closure of seen nodes
|
||||
while((current = queue_get(&queue)) != -1) {
|
||||
edge = simplified_graph[current].bruhat_lower;
|
||||
while(edge) {
|
||||
if(!seen[edge->to]) {
|
||||
seen[edge->to] = 1;
|
||||
queue_put(&queue, edge->to);
|
||||
}
|
||||
edge = edge->next;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// step 8: revert order
|
||||
for(int i = 0; i < ncosets; i++) {
|
||||
edge = simplified_graph[i].bruhat_lower;
|
||||
while(edge) {
|
||||
simplified_graph[edge->to].bruhat_higher =
|
||||
edgelist_add(simplified_graph[edge->to].bruhat_higher,
|
||||
i, edgelists_higher, &edgelists_used);
|
||||
edge = edge->next;
|
||||
}
|
||||
}
|
||||
|
||||
// output as graphviz dot file
|
||||
/*
|
||||
fprintf(stdout, "difull_graph test123 {\n");
|
||||
for(int i = 0; i < ncosets; i++) {
|
||||
edge = simplified_graph[i].bruhat_lower;
|
||||
while(edge) {
|
||||
fprintf(stdout, "%s -> %s;\n",
|
||||
alphabetize(simplified_graph[i].word, simplified_graph[i].wordlength, alphabet, buffer),
|
||||
alphabetize(simplified_graph[edge->to].word, simplified_graph[edge->to].wordlength, alphabet, buffer2));
|
||||
|
||||
edge = edge->next;
|
||||
}
|
||||
}
|
||||
fprintf(stdout, "}\n"); */
|
||||
|
||||
// some output
|
||||
/* for(int i = 0; i < ncosets; i++)
|
||||
fprintf(stderr, "%s <=> %s\n", simplified_graph[i].wordlength == 0 ? "1" : alphabetize(simplified_graph[i].word, simplified_graph[i].wordlength, alphabet, buffer), simplified_graph[simplified_graph[i].opposite].wordlength == 0 ? "1" : alphabetize(simplified_graph[simplified_graph[i].opposite].word, simplified_graph[simplified_graph[i].opposite].wordlength, alphabet, buffer2)); */
|
||||
|
||||
// fprintf(stderr, "\nAdded %d edges.\n\n", edgelists_used);
|
||||
|
||||
free(seen);
|
||||
free(reduced);
|
||||
free(group);
|
||||
free(simplified);
|
||||
graph_free(type, full_graph);
|
||||
|
||||
return ncosets;
|
||||
}
|
||||
|
||||
node_t *graph_alloc(semisimple_type_t type)
|
||||
{
|
||||
int rank = coxeter_rank(type);
|
||||
int order = coxeter_order(type);
|
||||
int hyperplanes = coxeter_hyperplanes(type);
|
||||
|
||||
node_t *graph = (node_t*)malloc(order*sizeof(node_t));
|
||||
int *left = (int*)malloc(order*rank*sizeof(int));
|
||||
int *right = (int*)malloc(order*rank*sizeof(int));
|
||||
edgelist_t *edgelists = (edgelist_t*)malloc(order*hyperplanes*sizeof(edgelist_t));
|
||||
int *words = (int*)malloc(order*hyperplanes*sizeof(int));
|
||||
|
||||
for(int i = 0; i < order; i++) {
|
||||
graph[i].left = &left[rank*i];
|
||||
graph[i].right = &right[rank*i];
|
||||
graph[i].word = &words[hyperplanes*i];
|
||||
}
|
||||
|
||||
graph[0].bruhat_higher = edgelists;
|
||||
|
||||
return graph;
|
||||
}
|
||||
|
||||
void graph_free(semisimple_type_t type, node_t *graph)
|
||||
{
|
||||
free(graph[0].left);
|
||||
free(graph[0].right);
|
||||
free(graph[0].word);
|
||||
|
||||
int order = coxeter_order(type);
|
||||
|
||||
// find the head of all edgelists by just taking the one having the lowest address
|
||||
edgelist_t *edgelists = graph[0].bruhat_lower;
|
||||
for(int i = 0; i < order; i++) {
|
||||
if(graph[i].bruhat_lower < edgelists && graph[i].bruhat_lower != 0)
|
||||
edgelists = graph[i].bruhat_lower;
|
||||
if(graph[i].bruhat_higher < edgelists && graph[i].bruhat_higher != 0)
|
||||
edgelists = graph[i].bruhat_higher;
|
||||
}
|
||||
free(edgelists);
|
||||
}
|
||||
|
||||
/*********************************** THE ACTUAL ENUMERATION ****************************************/
|
||||
|
||||
typedef struct {
|
||||
@ -401,7 +651,6 @@ static long enumerate_tree(const enumeration_info_t *info, signed char *level, i
|
||||
|
||||
long enumerate_balanced_thickenings(semisimple_type_t type, node_t *graph, int size, const char *alphabet, FILE *outfile)
|
||||
{
|
||||
// int rank, order;
|
||||
signed char *level;
|
||||
long count = 0;
|
||||
enumeration_info_t info;
|
||||
|
@ -25,10 +25,22 @@ typedef struct {
|
||||
int is_hyperplane_reflection; // boolean value
|
||||
} node_t;
|
||||
|
||||
// printing functions
|
||||
char *alphabetize(int *word, int len, const char *alphabet, char *buffer);
|
||||
void print_thickening(int rank, int order, const signed char *thickening, int level, const char *alphabet, FILE *f);
|
||||
static int compare_wordlength(const void *a, const void *b, void *gr);
|
||||
void prepare_graph(semisimple_type_t type, node_t *graph, edgelist_t **edgelists_pointer, int **words_pointer);
|
||||
|
||||
// generating the graph of the bruhat order
|
||||
void prepare_graph(semisimple_type_t type, node_t *graph);
|
||||
int prepare_simplified_graph(semisimple_type_t type, unsigned long left, unsigned long right, node_t *simplified_graph);
|
||||
|
||||
// enumerate balanced thickenings
|
||||
long enumerate_balanced_thickenings(semisimple_type_t type, node_t *graph, int size, const char *alphabet, FILE *outfile);
|
||||
node_t *graph_alloc(semisimple_type_t type);
|
||||
void graph_free(semisimple_type_t type, node_t *graph);
|
||||
|
||||
// various helper functions
|
||||
static int compare_wordlength(const void *a, const void *b, void *gr);
|
||||
static int edgelist_contains(edgelist_t *list, int x);
|
||||
static edgelist_t *edgelist_add(edgelist_t *list, int new, edgelist_t *storage, int *storage_index);
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user