generate geodesic automaton and lex reduced geodesic automaton

This commit is contained in:
Florian Stecker 2022-07-10 13:23:50 +02:00
commit fc4dfa195d

222
automaton.py Executable file
View File

@ -0,0 +1,222 @@
#!/usr/bin/python
# 0 is infinity
coxeter_matrix = [[1, 2, 3],
[2, 1, 0],
[3, 0, 1]]
import math
from copy import copy
from collections import deque
class Root:
def __init__(self, id, rank, depth = 0, v = None, neighbors = None):
self.id = id
self.rank = rank
self.depth = depth
if v:
self.v = v
else:
self.v = [0] * rank
if neighbors:
self.neighbors = neighbors
else:
self.neighbors = [None] * rank
def __copy__(self):
return Root(self.id, self.rank, self.depth, self.v.copy(), self.neighbors.copy())
# compute <alpha_k, beta> where alpha_k is one of the simple roots and beta any root
def form_gen_root(form, k, root):
rank = len(form)
return sum([root[i] * form[i][k] for i in range(rank)])
# compute beta - 2<alpha_k, beta>alpha_k, i.e. the reflection of beta along alpha_k
def apply_gen_to_root(form, k, root):
root[k] -= 2*form_gen_root(form, k, root)
# find a sequence of generators to apply to obtain a negative root, from left to right
# "startwidth" argument can be used to force the first entry
def find_word_to_negative(form, root_, startwith = None):
rank = len(form)
root = root_.copy()
word = []
while not next(filter(lambda x: x < -1e-6, root), None): # while root has no negative entry
for k in range(rank):
if startwith and k != startwith:
continue
# avoiding 0 might be a problem for reducible groups?
f = form_gen_root(form, k, root)
if f > 1e-6:
apply_gen_to_root(form, k, root)
word.append(k)
break
startwith = None
return word
# use find_word_to_negative() to find the root, if we already have it
def find_root_from_vector(form, roots, vector):
rank = len(form)
for k in range(rank):
word = find_word_to_negative(form, vector, startwith = k)
if not word:
continue
rootobj = roots[word.pop()]
while len(word) > 0:
letter = word.pop()
if not rootobj.neighbors[letter]:
rootobj = None
break
else:
rootobj = rootobj.neighbors[letter]
if rootobj:
return rootobj
return None
def find_small_roots(form):
rank = len(form)
small_roots = []
# the simple roots are just the standard basis vectors
for i in range(rank):
r = Root(i, rank)
r.v[i] = 1
r.depth = 1
small_roots.append(r)
# find the other small roots by applying generators to all existing roots
# and using find_root_from_vector() to see if we already have it
# then add it if it is a small root = was obtained via a short edge (form between -1 and 0)
i = 0
while i < len(small_roots):
root = small_roots[i]
for k in range(rank):
newroot = root.v.copy()
apply_gen_to_root(form, k, newroot)
rootobj = find_root_from_vector(form, small_roots, newroot)
if rootobj:
root.neighbors[k] = rootobj
else:
f = form_gen_root(form, k, root.v)
if f > -1 + 1e-6 and f < -1e-6: # root is new and is a small root
rootobj = Root(len(small_roots), rank, root.depth+1, newroot)
small_roots.append(rootobj)
root.neighbors[k] = rootobj
i = i+1
return small_roots
def apply_gen_to_node(small_roots, k, node, position, lex_reduced = False):
# if we want to get the lex reduced langauge
if lex_reduced:
for j in range(k):
if small_roots[j].neighbors[k] and position == small_roots[j].neighbors[k].id:
return 1
if position == k:
return 1
elif small_roots[position].neighbors[k]:
swappos = small_roots[position].neighbors[k].id
return node[swappos]
else:
return 0
def generate_automaton(small_roots, lex_reduced = False):
nroots = len(small_roots)
rank = small_roots[0].rank
start = tuple([0]*nroots)
todo = deque([start])
nodes = {start: 0}
levels = {start: 0}
edges = []
id = 1
while todo:
node = todo.pop()
for k in range(rank):
if node[k] == 1:
continue
newnode = tuple(
apply_gen_to_node(small_roots, k, node, i, lex_reduced = lex_reduced)
for i in range(nroots))
if not newnode in nodes:
nodes[newnode] = id
levels[newnode] = levels[node]+1
todo.appendleft(newnode)
id += 1
edges.append((nodes[node], nodes[newnode], k))
return (nodes, levels, edges)
# main program
form = [[-math.cos(math.pi/m) if m > 0 else -1 for m in row] for row in coxeter_matrix]
rank = len(coxeter_matrix)
small_roots = find_small_roots(form)
nodes, levels, edges = generate_automaton(small_roots, lex_reduced = False)
nodes_lex, levels_lex, edges_lex = generate_automaton(small_roots, lex_reduced = True)
#for r in small_roots:
# print((r.id,r.v,[n.id if n else -1 for n in r.neighbors]))
revedges = sorted(edges, key = lambda x:x[1])
adjlist = {}
revadjlist = {}
for efrom, eto, egen in edges:
if not efrom in adjlist:
adjlist[efrom] = [-1]*rank
adjlist[efrom][egen] = eto
if not eto in revadjlist:
revadjlist[eto] = [-1]*rank
revadjlist[eto][egen] = efrom
words = [([], 0)]
depth = 0
i = 0
while len(words[i][0]) < 10:
curword = words[i][0]
curnode = words[i][1]
for gen, nextnode in enumerate(adjlist[curnode]):
if nextnode < 0:
continue
nextword = curword.copy()
nextword.append(gen)
words.append((nextword, nextnode))
i += 1
#print(sorted([x[1] for x in words]))
#print(["".join([chr(ord('a')+x) for x in w[0]]) for w in words])
levelnodes = []
for n,id in nodes.items():
level = levels[n]
if level >= len(levelnodes):
levelnodes.append([])
levelnodes[level].append(id)
print("digraph test123 {")
print('rankdir="TB"')
for (level,ns) in enumerate(levelnodes):
print('{rank = "same";', end = ' ')
for n in ns:
print("{id:d};".format(id=n), end = ' ')
print('}')
colors = ['red', 'darkgreen', 'blue', 'orange']
for e in edges:
print("{fr:d} -> {to:d} [color={color}];".format(
fr = e[0],
to = e[1],
color = colors[e[2]]))
print("}")