174 lines
4.6 KiB
C
174 lines
4.6 KiB
C
#include "coxeter.h"
|
|
#include "linalg.h"
|
|
#include "mat.h"
|
|
#include "enumerate_triangle_group.h"
|
|
|
|
#define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0);
|
|
#define DEBUG(msg, ...)
|
|
|
|
double mpq_log(mpq_t m_op)
|
|
{
|
|
static double logB = log(ULONG_MAX);
|
|
|
|
// Undefined logs (should probably return NAN in second case?)
|
|
if (mpz_get_ui(mpq_numref(m_op)) == 0 || mpz_sgn(mpq_numref(m_op)) < 0)
|
|
return -INFINITY;
|
|
|
|
// Log of numerator
|
|
double lognum = log(mpq_numref(m_op)->_mp_d[abs(mpq_numref(m_op)->_mp_size) - 1]);
|
|
lognum += (abs(mpq_numref(m_op)->_mp_size)-1) * logB;
|
|
|
|
// Subtract log of denominator, if it exists
|
|
if (abs(mpq_denref(m_op)->_mp_size) > 0)
|
|
{
|
|
lognum -= log(mpq_denref(m_op)->_mp_d[abs(mpq_denref(m_op)->_mp_size)-1]);
|
|
lognum -= (abs(mpq_denref(m_op)->_mp_size)-1) * logB;
|
|
}
|
|
return lognum;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
mpq_t m, t, s, q, tmp, tmp2;
|
|
mat_workspace *ws;
|
|
mat gen[6];
|
|
mps_context *solver;
|
|
mps_monomial_poly *poly;
|
|
mat element, inverse;
|
|
int letter1, letter2, letter;
|
|
mpq_t tr, trinv;
|
|
double x, y, slope;
|
|
int retval;
|
|
double evs[3];
|
|
char buf[100];
|
|
double max_slope = 0;
|
|
int max_slope_index = 0;
|
|
double min_slope = INFINITY;
|
|
int min_slope_index = 0;
|
|
char *env;
|
|
int mode;
|
|
|
|
if(argc < 2) {
|
|
fprintf(stderr,
|
|
"Usage: %s <s> <q> <word1> <word2> ...\n"
|
|
"Computes jordan slopes of a list of group elements for a fixed representation.\n"
|
|
"s,q: representation in the Hitchin component, given as rational numbers, e.g. 2/7\n"
|
|
"word1, word2, ...: elements in the triangle rotation group, given as reflection group words\n"
|
|
"output: word - jordan slope pairs\n"
|
|
"+max slope index, max slope value, max slope word, min slope index, min slope value, min slope word\n"
|
|
"controlled by environment variable MAXIMUM=no/yes/only, default yes\n",
|
|
argv[0]);
|
|
exit(0);
|
|
}
|
|
|
|
mpq_inits(m, t, s, q, tmp, tmp2, tr, trinv, NULL);
|
|
ws = mat_workspace_init(3);
|
|
for(int i = 0; i < 6; i++)
|
|
mat_init(gen[i], 3);
|
|
mat_init(element, 3);
|
|
mat_init(inverse, 3);
|
|
|
|
solver = mps_context_new();
|
|
poly = mps_monomial_poly_new(solver, 3);
|
|
mps_context_set_output_prec(solver, 20); // relative precision
|
|
mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE);
|
|
|
|
mpq_set_str(s, argv[1], 10);
|
|
mpq_set_str(q, argv[2], 10);
|
|
|
|
env = getenv("MAXIMUM");
|
|
if(!env || strcmp(env, "yes") == 0) {
|
|
mode = 1; // yes
|
|
} else if(strcmp(env, "no") == 0) {
|
|
mode = 0; // no
|
|
} else if(strcmp(env, "only") == 0) {
|
|
mode = 2; // only
|
|
}
|
|
|
|
for(int w = 0; w < argc - 3; w++) {
|
|
initialize_triangle_generators(ws, gen, 6, 4, 3, s, q);
|
|
|
|
mat_identity(element);
|
|
mat_identity(inverse);
|
|
for(int k = 0; k < strlen(argv[w+3]); k+=2) {
|
|
letter1 = argv[w+3][k] - 'a';
|
|
letter2 = argv[w+3][k+1] - 'a';
|
|
|
|
if(letter1 == 1 && letter2 == 2)
|
|
letter = 0; // p = bc
|
|
else if(letter1 == 2 && letter2 == 0)
|
|
letter = 1; // q = ca
|
|
else if(letter1 == 0 && letter2 == 1)
|
|
letter = 2; // r = ab
|
|
else if(letter1 == 2 && letter2 == 1)
|
|
letter = 3; // p^{-1} = cb
|
|
else if(letter1 == 0 && letter2 == 2)
|
|
letter = 4; // q^{-1} = ac
|
|
else if(letter1 == 1 && letter2 == 0)
|
|
letter = 5; // r^{-1} = ba
|
|
|
|
mat_multiply(ws, element, element, gen[letter]);
|
|
mat_multiply(ws, inverse, gen[(letter+3)%6], inverse);
|
|
}
|
|
|
|
mat_trace(tr, element);
|
|
mat_trace(trinv, inverse);
|
|
|
|
retval = solve_characteristic_polynomial(solver, poly, tr, trinv, evs);
|
|
if(retval == 1) {
|
|
fprintf(stderr, "Error! Could not solve polynomial.\n");
|
|
return 1;
|
|
}
|
|
|
|
if(fabs(evs[0]) < fabs(evs[1]))
|
|
SWAP(double, evs[0], evs[1]);
|
|
if(fabs(evs[1]) < fabs(evs[2]))
|
|
SWAP(double, evs[1], evs[2]);
|
|
if(fabs(evs[0]) < fabs(evs[1]))
|
|
SWAP(double, evs[0], evs[1]);
|
|
|
|
x = log(fabs(evs[0]));
|
|
y = -log(fabs(evs[2]));
|
|
|
|
if(x > DBL_MAX || y > DBL_MAX) {
|
|
mpq_abs(tmp, tr);
|
|
mpq_abs(tmp2, trinv);
|
|
slope = mpq_log(tmp)/mpq_log(tmp2);
|
|
} else {
|
|
slope = y/x;
|
|
}
|
|
|
|
if(slope < 1)
|
|
slope = 1/slope;
|
|
|
|
if(slope > max_slope) {
|
|
max_slope = slope;
|
|
max_slope_index = w;
|
|
}
|
|
|
|
if(slope < min_slope) {
|
|
min_slope = slope;
|
|
min_slope_index = w;
|
|
}
|
|
|
|
if(mode != 2) {
|
|
// gmp_printf("%s %.9f %Qd %Qd\n", argv[w+3], slope, tr, trinv);
|
|
gmp_printf("%s %.9f %.9f %.9f\n", argv[w+3], slope, x, y);
|
|
}
|
|
}
|
|
|
|
if(mode != 0)
|
|
printf("%d %.9f %s %d %.9f %s\n",
|
|
max_slope_index, max_slope, argv[max_slope_index+3],
|
|
min_slope_index, min_slope, argv[min_slope_index+3]);
|
|
fflush(stdout);
|
|
|
|
mpq_clears(m, t, s, q, tmp, tmp2, tr, trinv, NULL);
|
|
mat_workspace_clear(ws);
|
|
for(int i = 0; i < 6; i++)
|
|
mat_clear(gen[i]);
|
|
mat_clear(element);
|
|
mat_clear(inverse);
|
|
mps_context_free(solver);
|
|
}
|