#include "coxeter.h" #include "linalg.h" #include "mat.h" #include #include #define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0); //#define DEBUG(msg, ...) fprintf(stderr, msg, ##__VA_ARGS__) #define DEBUG(msg, ...) #define OUTPUT_POINTS //#define OUTPUT_POINTS struct result { int id; int count; mpq_t tr; mpq_t trinv; double x; double y; }; static int compare_result(const void *a_, const void *b_) { int d = 0; struct result **a = (struct result **)a_; struct result **b = (struct result **)b_; d = mpq_cmp((*a)->tr,(*b)->tr); if(d == 0) { d = mpq_cmp((*a)->trinv, (*b)->trinv); } return d; } static int compare_result_with_id(const void *a_, const void *b_) { int d = 0; struct result **a = (struct result **)a_; struct result **b = (struct result **)b_; d = mpq_cmp((*a)->tr,(*b)->tr); if(d == 0) { d = mpq_cmp((*a)->trinv, (*b)->trinv); if(d == 0) { d = (*b)->id - (*a)->id; } } return d; } static int compare_result_by_slope(const void *a_, const void *b_) { int d = 0; struct result **a = (struct result **)a_; struct result **b = (struct result **)b_; double slopea = (*a)->x / (*a)->y; double slopeb = (*b)->x / (*b)->y; return slopea > slopeb ? -1 : slopea < slopeb ? 1 : 0; } int solve_characteristic_polynomial(mps_context *solv, mpq_t tr, mpq_t trinv, double *eigenvalues) { mpq_t coeff1, coeff2, zero; cplx_t *roots; double radii[3]; double *radii_p[3]; mps_monomial_poly *poly; mps_boolean errors; int result = 0; mpq_inits(coeff1, coeff2, zero, NULL); mpq_set(coeff1, trinv); mpq_sub(coeff2, zero, tr); poly = mps_monomial_poly_new(solv, 3); mps_monomial_poly_set_coefficient_int(solv, poly, 0, -1, 0); mps_monomial_poly_set_coefficient_q(solv, poly, 1, coeff1, zero); mps_monomial_poly_set_coefficient_q(solv, poly, 2, coeff2, zero); mps_monomial_poly_set_coefficient_int(solv, poly, 3, 1, 0); mps_context_set_input_poly(solv, (mps_polynomial*)poly); mps_mpsolve(solv); roots = cplx_valloc(3); for(int i = 0; i < 3; i++) radii_p[i] = &(radii[i]); mps_context_get_roots_d(solv, &roots, radii_p); errors = mps_context_has_errors(solv); if(errors) { result = 1; } else { for(int i = 0; i < 3; i++) { eigenvalues[i] = cplx_Re(roots[i]); if(fabs(cplx_Im(roots[i])) > radii[i]) // non-real root result = 2; } } cplx_vfree(roots); mpq_clears(coeff1, coeff2, zero, NULL); return result; } void continued_fraction_approximation(mpq_t out, double in, int level) { mpq_t tmp; if(in < 0) { mpq_init(tmp); mpq_set_ui(tmp, 0, 1); continued_fraction_approximation(out, -in, level); mpq_sub(out, tmp, out); mpq_clear(tmp); return; } if(level == 0) { mpq_set_si(out, (signed long int)round(in), 1); // floor(in) } else { continued_fraction_approximation(out, 1/(in - floor(in)), level - 1); mpq_init(tmp); mpq_set_ui(tmp, 1, 1); mpq_div(out, tmp, out); // out -> 1/out mpq_set_si(tmp, (signed long int)in, 1); // floor(in) mpq_add(out, out, tmp); mpq_clear(tmp); } } void quartic(mpq_t out, mpq_t in, int a, int b, int c, int d, int e) { mpq_t tmp; mpq_init(tmp); mpq_set_si(out, a, 1); mpq_mul(out, out, in); mpq_set_si(tmp, b, 1); mpq_add(out, out, tmp); mpq_mul(out, out, in); mpq_set_si(tmp, c, 1); mpq_add(out, out, tmp); mpq_mul(out, out, in); mpq_set_si(tmp, d, 1); mpq_add(out, out, tmp); mpq_mul(out, out, in); mpq_set_si(tmp, e, 1); mpq_add(out, out, tmp); mpq_clear(tmp); } void initialize_triangle_generators(mat_workspace *ws, mat *gen, mpq_t s, mpq_t q) { mat r1,r2,r3; mpq_t rho1, rho2, rho3; mpq_t b1,c1,a2,c2,a3,b3; mpq_t sinv; mpq_inits(sinv,rho1,rho2,rho3,b1,c1,a2,c2,a3,b3,NULL); mat_init(r1, 3); mat_init(r2, 3); mat_init(r3, 3); mpq_set_ui(sinv, 1, 1); mpq_div(sinv, sinv, s); quartic(rho1, s, 0, 0, 1, -1, 1); quartic(rho2, s, 0, 0, 1, -1, 1); quartic(rho3, s, 0, 0, 1, 0, 1); mpq_mul(c1, rho2, q); mpq_mul(a2, rho3, q); mpq_mul(b3, rho1, q); mpq_set_ui(b1, 1, 1); mpq_set_ui(c2, 1, 1); mpq_set_ui(a3, 1, 1); mpq_div(b1, b1, q); mpq_div(c2, c2, q); mpq_div(a3, a3, q); // actually, we want minus everything mat_zero(r1); mat_zero(r2); mat_zero(r3); mpq_set_si(*mat_ref(r1, 0, 0), -1, 1); mpq_set_si(*mat_ref(r1, 1, 1), 1, 1); mpq_set_si(*mat_ref(r1, 2, 2), 1, 1); mpq_set_si(*mat_ref(r2, 0, 0), 1, 1); mpq_set_si(*mat_ref(r2, 1, 1), -1, 1); mpq_set_si(*mat_ref(r2, 2, 2), 1, 1); mpq_set_si(*mat_ref(r3, 0, 0), 1, 1); mpq_set_si(*mat_ref(r3, 1, 1), 1, 1); mpq_set_si(*mat_ref(r3, 2, 2), -1, 1); mpq_set(*mat_ref(r1, 1, 0), b1); mpq_set(*mat_ref(r1, 2, 0), c1); mpq_set(*mat_ref(r2, 0, 1), a2); mpq_set(*mat_ref(r2, 2, 1), c2); mpq_set(*mat_ref(r3, 0, 2), a3); mpq_set(*mat_ref(r3, 1, 2), b3); mat_zero(gen[0]); mat_zero(gen[1]); mat_zero(gen[2]); mpq_set_ui(*mat_ref(gen[0], 0, 0), 1, 1); mat_set(gen[0], 1, 1, sinv); mat_set(gen[0], 2, 2, s); mat_set(gen[1], 0, 0, s); mpq_set_ui(*mat_ref(gen[1], 1, 1), 1, 1); mat_set(gen[1], 2, 2, sinv); mat_set(gen[2], 0, 0, sinv); mat_set(gen[2], 1, 1, s); mpq_set_ui(*mat_ref(gen[2], 2, 2), 1, 1); mat_multiply(ws, gen[0], r2, gen[0]); mat_multiply(ws, gen[0], gen[0], r3); mat_multiply(ws, gen[1], r3, gen[1]); mat_multiply(ws, gen[1], gen[1], r1); mat_multiply(ws, gen[2], r1, gen[2]); mat_multiply(ws, gen[2], gen[2], r2); mat_pseudoinverse(ws, gen[3], gen[0]); mat_pseudoinverse(ws, gen[4], gen[1]); mat_pseudoinverse(ws, gen[5], gen[2]); /* mat_print(r1); mat_print(r2); mat_print(r3); mat_print(gen[0]); mat_print(gen[1]); mat_print(gen[2]); mat_print(gen[3]); mat_print(gen[4]); mat_print(gen[5]); */ mpq_clears(sinv,rho1,rho2,rho3,b1,c1,a2,c2,a3,b3,NULL); mat_clear(r1); mat_clear(r2); mat_clear(r3); } char *print_word(groupelement_t *g, char *str) { int i = g->length - 1; str[g->length] = 0; while(g->parent) { str[i--] = 'a' + g->letter; g = g->parent; } return str; } void enumerate(group_t *group, mat *matrices, mpq_t s, mpq_t t) { mat_workspace *ws; mat tmp; mat gen[6]; char buf[100], buf2[100], buf3[100]; // allocate stuff ws = mat_workspace_init(3); for(int i = 0; i < 6; i++) mat_init(gen[i], 3); mat_init(tmp, 3); initialize_triangle_generators(ws, gen, s, t); mat_identity(matrices[0]); for(int i = 1; i < group->size; i++) { if(group->elements[i].length % 2 != 0) continue; if(!group->elements[i].inverse) continue; int parent = group->elements[i].parent->id; int grandparent = group->elements[i].parent->parent->id; int letter; if(group->elements[parent].letter == 1 && group->elements[i].letter == 2) letter = 0; // p = bc else if(group->elements[parent].letter == 2 && group->elements[i].letter == 0) letter = 1; // q = ca else if(group->elements[parent].letter == 0 && group->elements[i].letter == 1) letter = 2; // r = ab if(group->elements[parent].letter == 2 && group->elements[i].letter == 1) letter = 3; // p^{-1} = cb else if(group->elements[parent].letter == 0 && group->elements[i].letter == 2) letter = 4; // q^{-1} = ac else if(group->elements[parent].letter == 1 && group->elements[i].letter == 0) letter = 5; // r^{-1} = ba mat_multiply(ws, matrices[i], matrices[grandparent], gen[letter]); } // free stuff for(int i = 0; i < 6; i++) mat_clear(gen[i]); mat_clear(tmp); mat_workspace_clear(ws); } void output_invariants(group_t *group, mat *matrices, mpq_t s, mpq_t q, mps_context *solver) { mpq_t tr, trinv; char buf[100]; double evs[3]; int retval; mpq_inits(tr, trinv, NULL); for(int i = 0; i < group->size; i++) { if(group->elements[i].length % 2 != 0 || !group->elements[i].inverse) continue; mat_trace(tr, matrices[i]); mat_trace(trinv, matrices[group->elements[i].inverse->id]); retval = solve_characteristic_polynomial(solver, tr, trinv, evs); if(retval == 1) { fprintf(stderr, "Error! Could not solve polynomial.\n"); continue; } else if(retval == 2) { continue; } if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); if(fabs(evs[1]) < fabs(evs[2])) SWAP(double, evs[1], evs[2]); if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); gmp_printf("%d %d %s %Qd %Qd %f %f\n", i, group->elements[i].length, print_word(&group->elements[i], buf), tr, trinv, log(evs[0]), -log(evs[2])); } mpq_clears(tr, trinv, NULL); } /* double max_slope(groupelement_t *group, mat *matrices, mpq_t s, mpq_t t, int *index) { double max = 0; double slope; mpq_t tr, trinv; char buf[100]; mpq_inits(tr, trinv, NULL); for(int i = 0; i < MAX_ELEMENTS; i++) { if(group[i].length % 2 != 0 || !group[i].inverse) continue; mat_trace(tr, matrices[i]); mat_trace(trinv, matrices[group[i].inverse->id]); slope = log(mpq_get_d(trinv))/log(mpq_get_d(tr)); if(slope > max) { *index = i; max = slope; } } mpq_clears(tr, trinv, NULL); return max; } */ int main(int argc, char *argv[]) { mpq_t s, q, t, tmp; double sapprox, tapprox, qapprox, tqfactor; mat *matrices; group_t *group; int index; mps_context *solver; int acc = 100; int n, nuniq, nmax; int retval; double evs[3]; double max_slope; char buf[100]; char buf2[100]; struct result *invariants; struct result **distinct_invariants; if(argc < 4) { fprintf(stderr, "Usage: %s \n", argv[0]); exit(1); } nmax = atoi(argv[1]); DEBUG("Allocate\n"); mpq_inits(s, q, t, tmp, NULL); matrices = malloc(nmax*sizeof(mat)); for(int i = 0; i < nmax; i++) mat_init(matrices[i], 3); invariants = malloc(nmax*sizeof(struct result)); distinct_invariants = malloc(nmax*sizeof(struct result)); for(int i = 0; i < nmax; i++) { mpq_init(invariants[i].tr); mpq_init(invariants[i].trinv); distinct_invariants[i] = &invariants[i]; } solver = mps_context_new(); mps_context_set_output_prec(solver, 20); // relative precision mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE); DEBUG("Approximate parameters\n"); // get approximate s and q values sapprox = atof(argv[2]); tapprox = atof(argv[3]); tqfactor = pow((sapprox*sapprox-sapprox+1)*(sapprox*sapprox-sapprox+1)*(sapprox*sapprox+1), 1/6.0); qapprox = tapprox/tqfactor; for(int i = 0; ; i++) { continued_fraction_approximation(tmp, sapprox, i); if(fabs(mpq_get_d(t)-sapprox) < 1e-10 || (mpz_cmpabs_ui(mpq_numref(tmp),acc) > 0 && mpz_cmpabs_ui(mpq_denref(tmp),acc) > 0)) break; mpq_set(s, tmp); } mpq_canonicalize(s); for(int i = 0; ; i++) { continued_fraction_approximation(tmp, qapprox, i); if(fabs(mpq_get_d(t)-qapprox) < 1e-10 || (mpz_cmpabs_ui(mpq_numref(tmp),acc) > 0 && mpz_cmpabs_ui(mpq_denref(tmp),acc) > 0)) break; mpq_set(q, tmp); } mpq_canonicalize(q); tqfactor = pow((mpq_get_d(s)*mpq_get_d(s)-mpq_get_d(s)+1)*(mpq_get_d(s)*mpq_get_d(s)-mpq_get_d(s)+1)*(mpq_get_d(s)*mpq_get_d(s)+1), 1/6.0); #ifdef OUTPUT_POINTS // gmp_fprintf(stdout, "\"s = %Qd = %.3f, q = %Qd, t = %.3f\"\n", s, mpq_get_d(s), q, mpq_get_d(q)*tqfactor); #endif // group DEBUG("Generate group\n"); group = coxeter_init_triangle(4, 3, 3, nmax); DEBUG("Compute matrices\n"); enumerate(group, matrices, s, q); n = 0; DEBUG("Compute traces\n"); for(int i = 0; i < nmax; i++) { if(group->elements[i].length % 2 != 0 || !group->elements[i].inverse) continue; invariants[i].id = i; mat_trace(invariants[i].tr, matrices[i]); mat_trace(invariants[i].trinv, matrices[group->elements[i].inverse->id]); distinct_invariants[n++] = &invariants[i]; } DEBUG("Get unique traces\n"); qsort(distinct_invariants, n, sizeof(struct result*), compare_result); nuniq = 0; for(int i = 0; i < n; i++) { if(i == 0 || compare_result(&distinct_invariants[i], &distinct_invariants[nuniq-1]) != 0) { distinct_invariants[nuniq] = distinct_invariants[i]; distinct_invariants[nuniq]->count = 1; nuniq++; } else { distinct_invariants[nuniq-1]->count++; int oldlength = group->elements[distinct_invariants[nuniq-1]->id].length; int newlength = group->elements[distinct_invariants[i]->id].length; if(newlength < oldlength) distinct_invariants[nuniq-1]->id = distinct_invariants[i]->id; } // gmp_printf("%d %d %s\n", i, nuniq-1, print_word(&group->elements[i], buf)); } max_slope = 0; int max_slope_index; DEBUG("Solve characteristic polynomials\n"); for(int i = 0; i < nuniq; i++) { retval = solve_characteristic_polynomial(solver, distinct_invariants[i]->tr, distinct_invariants[i]->trinv, evs); if(retval == 1) { fprintf(stderr, "Error! Could not solve polynomial.\n"); continue; } else if(retval == 2) { continue; } if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); if(fabs(evs[1]) < fabs(evs[2])) SWAP(double, evs[1], evs[2]); if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); double x = log(fabs(evs[0])); double y = -log(fabs(evs[2])); distinct_invariants[i]->x = x; distinct_invariants[i]->y = y; if(y/x > max_slope && (x > 0.1 || y > 0.1)) { max_slope_index = distinct_invariants[i] - invariants; max_slope = y/x; } } qsort(distinct_invariants, nuniq, sizeof(struct result*), compare_result_by_slope); // printf("- 0 0 - - - - 0.5\n"); int cumulative = 0; double slope; for(int i = 0; i < nuniq; i++) { slope = distinct_invariants[i]->y/distinct_invariants[i]->x; mpq_set_si(tmp, 1, 1); if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 && mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0) { continue; } mpq_set_si(tmp, 0, 1); if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 && mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0) { continue; } mpq_set_si(tmp, -1, 1); if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 && mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0) { continue; } mpq_set_si(tmp, 3, 1); if(mpq_cmp(distinct_invariants[i]->tr, tmp) == 0 && mpq_cmp(distinct_invariants[i]->trinv, tmp) == 0) { continue; } cumulative += distinct_invariants[i]->count; gmp_printf("%d %d %d %Qd %Qd %f %f %f %f %f %s\n", distinct_invariants[i]->id, distinct_invariants[i]->count, cumulative, distinct_invariants[i]->tr, distinct_invariants[i]->trinv, log(fabs(mpq_get_d(distinct_invariants[i]->tr))), log(fabs(mpq_get_d(distinct_invariants[i]->trinv))), distinct_invariants[i]->x, distinct_invariants[i]->y, slope, print_word(&group->elements[distinct_invariants[i]->id], buf) ); } // printf("- 0 %d - - - - 2.0\n", cumulative); #ifdef OUTPUT_SUMMARY fprintf(stdout, "%.3f %.3f %f %s\n", mpq_get_d(s), mpq_get_d(q)*tqfactor, max_slope, print_word(&group->elements[max_slope_index], buf)); #endif // output_invariants(group, matrices, s, q, solver); // for(int i = 0; i < 10; i++) { // mpq_set_ui(t,100+i,100); // mpq_canonicalize(t); //printf("%f %f\n", mpq_get_d(t), max_slope(group, matrices, s, t, &index)); // } DEBUG("Clean up\n"); for(int i = 0; i < nmax; i++) { mpq_clear(invariants[i].tr); mpq_clear(invariants[i].trinv); } free(invariants); free(distinct_invariants); for(int i = 0; i < nmax; i++) mat_clear(matrices[i]); free(matrices); coxeter_clear(group); mpq_clears(s, q, t, tmp, NULL); mps_context_free(solver); }