#include "coxeter.h" #include "linalg.h" #include "mat.h" #include #include #define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0); #define DEBUG(msg, ...) do { print_time(); fprintf(stderr, msg, ##__VA_ARGS__); } while (0); //#define DEBUG(msg, ...) //#define OUTPUT_POINTS #define OUTPUT_SUMMARY struct timespec starttime; void print_time() { double diff; struct timespec current; clock_gettime(CLOCK_REALTIME, ¤t); diff = (current.tv_sec - starttime.tv_sec) + (current.tv_nsec - starttime.tv_nsec)*1e-9; fprintf(stderr, "[%.3f] ", diff); } struct result { mpq_t tr; mpq_t trinv; }; static int compare_result(const void *a_, const void *b_) { int d = 0; struct result **a = (struct result **)a_; struct result **b = (struct result **)b_; d = mpq_cmp((*a)->tr,(*b)->tr); if(d == 0) d = mpq_cmp((*a)->trinv, (*b)->trinv); return d; } int solve_characteristic_polynomial(mps_context *solv, mpq_t tr, mpq_t trinv, double *eigenvalues) { mpq_t coeff1, coeff2, zero; cplx_t *roots; double radii[3]; double *radii_p[3]; mps_monomial_poly *poly; mps_boolean errors; int result = 0; mpq_inits(coeff1, coeff2, zero, NULL); mpq_set(coeff1, trinv); mpq_sub(coeff2, zero, tr); poly = mps_monomial_poly_new(solv, 3); mps_monomial_poly_set_coefficient_int(solv, poly, 0, -1, 0); mps_monomial_poly_set_coefficient_q(solv, poly, 1, coeff1, zero); mps_monomial_poly_set_coefficient_q(solv, poly, 2, coeff2, zero); mps_monomial_poly_set_coefficient_int(solv, poly, 3, 1, 0); mps_context_set_input_poly(solv, (mps_polynomial*)poly); mps_mpsolve(solv); roots = cplx_valloc(3); for(int i = 0; i < 3; i++) radii_p[i] = &(radii[i]); mps_context_get_roots_d(solv, &roots, radii_p); errors = mps_context_has_errors(solv); if(errors) { result = 1; } else { for(int i = 0; i < 3; i++) { eigenvalues[i] = cplx_Re(roots[i]); if(fabs(cplx_Im(roots[i])) > radii[i]) // non-real root result = 2; } } cplx_vfree(roots); mpq_clears(coeff1, coeff2, zero, NULL); return result; } void continued_fraction_approximation(mpq_t out, double in, int level) { mpq_t tmp; if(in < 0) { mpq_init(tmp); mpq_set_ui(tmp, 0, 1); continued_fraction_approximation(out, -in, level); mpq_sub(out, tmp, out); mpq_clear(tmp); return; } if(level == 0) { mpq_set_si(out, (signed long int)round(in), 1); // floor(in) } else { continued_fraction_approximation(out, 1/(in - floor(in)), level - 1); mpq_init(tmp); mpq_set_ui(tmp, 1, 1); mpq_div(out, tmp, out); // out -> 1/out mpq_set_si(tmp, (signed long int)in, 1); // floor(in) mpq_add(out, out, tmp); mpq_clear(tmp); } } void quartic(mpq_t out, mpq_t in, int a, int b, int c, int d, int e) { mpq_t tmp; mpq_init(tmp); mpq_set_si(out, a, 1); mpq_mul(out, out, in); mpq_set_si(tmp, b, 1); mpq_add(out, out, tmp); mpq_mul(out, out, in); mpq_set_si(tmp, c, 1); mpq_add(out, out, tmp); mpq_mul(out, out, in); mpq_set_si(tmp, d, 1); mpq_add(out, out, tmp); mpq_mul(out, out, in); mpq_set_si(tmp, e, 1); mpq_add(out, out, tmp); mpq_clear(tmp); } // this version is only for the (4,4,4) group void initialize_triangle_generators(mat_workspace *ws, mat *gen, mpq_t m, mpq_t t) { mpq_t s,sinv,q,x,y; mpq_t zero, one, two; mpq_t tmp; mpq_inits(s,sinv,q,x,y,zero,one,two,tmp,NULL); mpq_set_ui(zero, 0, 1); mpq_set_ui(one, 1, 1); mpq_set_ui(two, 2, 1); // s = (1-m^2)/2m mpq_mul(s, m, m); mpq_sub(s, one, s); mpq_div(s, s, m); mpq_div(s, s, two); mpq_div(sinv, one, s); // q = (1+m^2)/(1-m^2) = 2/(1-m^2) - 1 mpq_mul(q, m, m); mpq_sub(q, one, q); mpq_div(q, two, q); mpq_sub(q, q, one); // x = -tq, y = -q/t mpq_mul(x, q, t); mpq_sub(x, zero, x); mpq_div(y, q, t); mpq_sub(y, zero, y); // q^2 = xy = 1 + 1/s^2 // [ -s s*y 0] // [ -s*x s*x*y - 1/s 0] // [ -s*y s*y^2 - x 1] LOOP(i,3) { mat_zero(gen[i]); mpq_sub(tmp, zero, s); mat_set(gen[i%3], i%3, i%3, tmp); mpq_mul(tmp, s, y); mat_set(gen[i%3], i%3, (i+1)%3, tmp); mpq_mul(tmp, s, x); mpq_sub(tmp, zero, tmp); mat_set(gen[i%3], (i+1)%3, i%3, tmp); mpq_mul(tmp, s, x); mpq_mul(tmp, tmp, y); mpq_sub(tmp, tmp, sinv); mat_set(gen[i%3], (i+1)%3, (i+1)%3, tmp); mpq_mul(tmp, s, y); mpq_sub(tmp, zero, tmp); mat_set(gen[i%3], (i+2)%3, i%3, tmp); mpq_mul(tmp, s, y); mpq_mul(tmp, tmp, y); mpq_sub(tmp, tmp, x); mat_set(gen[i%3], (i+2)%3, (i+1)%3, tmp); mat_set(gen[i%3], (i+2)%3, (i+2)%3, one); } LOOP(i,3) mat_pseudoinverse(ws, gen[i+3], gen[i]); // debug output /* gmp_printf("m = %Qd, s = %Qd, t = %Qd, q = %Qd, x = %Qd, y = %Qd\n", m, s, t, q, x, y); mat_print(gen[0]); mat_print(gen[1]); mat_print(gen[2]); */ mpq_inits(s,sinv,q,x,y,zero,one,two,tmp,NULL); } char *print_word(groupelement_t *g, char *str) { int i = g->length - 1; str[g->length] = 0; while(g->parent) { str[i--] = 'a' + g->letter; g = g->parent; } return str; } void enumerate(group_t *group, mat *matrices, mpq_t m, mpq_t t) { mat_workspace *ws; mat tmp; mat gen[6]; char buf[100], buf2[100], buf3[100]; // allocate stuff ws = mat_workspace_init(3); for(int i = 0; i < 6; i++) mat_init(gen[i], 3); mat_init(tmp, 3); initialize_triangle_generators(ws, gen, m, t); mat_identity(matrices[0]); for(int i = 1; i < group->size; i++) { if(group->elements[i].length % 2 != 0) continue; if(!group->elements[i].inverse) continue; int parent = group->elements[i].parent->id; int grandparent = group->elements[i].parent->parent->id; int letter; if(group->elements[parent].letter == 1 && group->elements[i].letter == 2) letter = 0; // p = bc else if(group->elements[parent].letter == 2 && group->elements[i].letter == 0) letter = 1; // q = ca else if(group->elements[parent].letter == 0 && group->elements[i].letter == 1) letter = 2; // r = ab if(group->elements[parent].letter == 2 && group->elements[i].letter == 1) letter = 3; // p^{-1} = cb else if(group->elements[parent].letter == 0 && group->elements[i].letter == 2) letter = 4; // q^{-1} = ac else if(group->elements[parent].letter == 1 && group->elements[i].letter == 0) letter = 5; // r^{-1} = ba mat_multiply(ws, matrices[i], matrices[grandparent], gen[letter]); } // free stuff for(int i = 0; i < 6; i++) mat_clear(gen[i]); mat_clear(tmp); mat_workspace_clear(ws); } void output_invariants(group_t *group, mat *matrices, mpq_t s, mpq_t q, mps_context *solver) { mpq_t tr, trinv; char buf[100]; double evs[3]; int retval; mpq_inits(tr, trinv, NULL); for(int i = 0; i < group->size; i++) { if(group->elements[i].length % 2 != 0 || !group->elements[i].inverse) continue; mat_trace(tr, matrices[i]); mat_trace(trinv, matrices[group->elements[i].inverse->id]); retval = solve_characteristic_polynomial(solver, tr, trinv, evs); if(retval == 1) { fprintf(stderr, "Error! Could not solve polynomial.\n"); continue; } else if(retval == 2) { continue; } if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); if(fabs(evs[1]) < fabs(evs[2])) SWAP(double, evs[1], evs[2]); if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); gmp_printf("%d %d %s %Qd %Qd %f %f\n", i, group->elements[i].length, print_word(&group->elements[i], buf), tr, trinv, log(evs[0]), -log(evs[2])); } mpq_clears(tr, trinv, NULL); } /* double max_slope(groupelement_t *group, mat *matrices, mpq_t s, mpq_t t, int *index) { double max = 0; double slope; mpq_t tr, trinv; char buf[100]; mpq_inits(tr, trinv, NULL); for(int i = 0; i < MAX_ELEMENTS; i++) { if(group[i].length % 2 != 0 || !group[i].inverse) continue; mat_trace(tr, matrices[i]); mat_trace(trinv, matrices[group[i].inverse->id]); slope = log(mpq_get_d(trinv))/log(mpq_get_d(tr)); if(slope > max) { *index = i; max = slope; } } mpq_clears(tr, trinv, NULL); return max; } */ int main(int argc, char *argv[]) { mpq_t m, t, tmp; double s; mat *matrices; group_t *group; int index; mps_context *solver; int acc = 100; int n, nuniq, nmax; int retval; double evs[3]; double max_slope; char buf[100]; char buf2[100]; struct result *invariants; struct result **distinct_invariants; clock_gettime(CLOCK_REALTIME, &starttime); nmax = atoi(argv[1]); DEBUG("Allocate\n"); mpq_inits(m, t, tmp, NULL); matrices = malloc(nmax*sizeof(mat)); for(int i = 0; i < nmax; i++) mat_init(matrices[i], 3); invariants = malloc(nmax*sizeof(struct result)); distinct_invariants = malloc(nmax*sizeof(struct result)); for(int i = 0; i < nmax; i++) { mpq_init(invariants[i].tr); mpq_init(invariants[i].trinv); distinct_invariants[i] = &invariants[i]; } solver = mps_context_new(); mps_context_set_output_prec(solver, 20); // relative precision mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE); /* DEBUG("Approximate parameters\n"); // get approximate s and q values sapprox = atof(argv[2]); tapprox = atof(argv[3]); tqfactor = pow((sapprox*sapprox-sapprox+1)*(sapprox*sapprox-sapprox+1)*(sapprox*sapprox+1), 1/6.0); qapprox = tapprox/tqfactor; for(int i = 0; ; i++) { continued_fraction_approximation(tmp, sapprox, i); if(fabs(mpq_get_d(t)-sapprox) < 1e-10 || (mpz_cmpabs_ui(mpq_numref(tmp),acc) > 0 && mpz_cmpabs_ui(mpq_denref(tmp),acc) > 0)) break; mpq_set(s, tmp); } mpq_canonicalize(s); for(int i = 0; ; i++) { continued_fraction_approximation(tmp, qapprox, i); if(fabs(mpq_get_d(t)-qapprox) < 1e-10 || (mpz_cmpabs_ui(mpq_numref(tmp),acc) > 0 && mpz_cmpabs_ui(mpq_denref(tmp),acc) > 0)) break; mpq_set(q, tmp); } mpq_canonicalize(q); tqfactor = pow((mpq_get_d(s)*mpq_get_d(s)-mpq_get_d(s)+1)*(mpq_get_d(s)*mpq_get_d(s)-mpq_get_d(s)+1)*(mpq_get_d(s)*mpq_get_d(s)+1), 1/6.0); #ifdef OUTPUT_POINTS gmp_fprintf(stdout, "\"s = %Qd = %.3f, q = %Qd, t = %.3f\"\n", s, mpq_get_d(s), q, mpq_get_d(q)*tqfactor); #endif */ // group DEBUG("Generate group\n"); group = coxeter_init_triangle(4, 4, 4, nmax); fprintf(stderr, "max word length = %d\n", group->elements[nmax-1].length); for(int ttick = 45; ttick <= 65; ttick++) { for(int mtick = 45; mtick < 65; mtick++) { mpq_set_ui(t, ttick, 100); mpq_set_ui(m, mtick, 100); // 414/1000 ~ sqrt(2)-1 <-> s=1 s = (1-mpq_get_d(m)*mpq_get_d(m))/(2*mpq_get_d(m)); DEBUG("Compute matrices\n"); enumerate(group, matrices, m, t); n = 0; DEBUG("Compute traces\n"); for(int i = 0; i < nmax; i++) { if(group->elements[i].length % 2 != 0 || !group->elements[i].inverse) continue; mat_trace(invariants[i].tr, matrices[i]); mat_trace(invariants[i].trinv, matrices[group->elements[i].inverse->id]); distinct_invariants[n++] = &invariants[i]; // gmp_printf("%Qd %Qd %d %s\n", invariants[i].tr, invariants[i].trinv, i, print_word(&group->elements[i], buf)); } DEBUG("Get unique traces\n"); qsort(distinct_invariants, n, sizeof(struct result*), compare_result); nuniq = 0; for(int i = 0; i < n; i++) { if(i == 0 || compare_result(&distinct_invariants[i], &distinct_invariants[nuniq-1]) != 0) distinct_invariants[nuniq++] = distinct_invariants[i]; } max_slope = 0; int max_slope_index; DEBUG("Solve characteristic polynomials\n"); for(int i = 0; i < nuniq; i++) { retval = solve_characteristic_polynomial(solver, distinct_invariants[i]->tr, distinct_invariants[i]->trinv, evs); if(retval == 1) { fprintf(stderr, "Error! Could not solve polynomial.\n"); continue; } else if(retval == 2) { continue; } if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); if(fabs(evs[1]) < fabs(evs[2])) SWAP(double, evs[1], evs[2]); if(fabs(evs[0]) < fabs(evs[1])) SWAP(double, evs[0], evs[1]); double x = log(fabs(evs[0])); double y = -log(fabs(evs[2])); if(y/x > max_slope && (x > 0.1 || y > 0.1)) { max_slope_index = distinct_invariants[i] - invariants; max_slope = y/x; } #ifdef OUTPUT_POINTS gmp_printf("%Qd %Qd %f %f %f\n", distinct_invariants[i]->tr, distinct_invariants[i]->trinv, x, y, y/x); #endif } #ifdef OUTPUT_SUMMARY // fprintf(stdout, "%.5f %.5f %.5f %f %s\n", mpq_get_d(t), mpq_get_d(m), s, max_slope, print_word(&group->elements[max_slope_index], buf)); fprintf(stdout, "%.5f %.5f %.5f %f %s\n", mpq_get_d(t), mpq_get_d(m), s, max_slope, print_word(&group->elements[max_slope_index], buf)); #endif } } DEBUG("Clean up\n"); for(int i = 0; i < nmax; i++) { mpq_clear(invariants[i].tr); mpq_clear(invariants[i].trinv); } free(invariants); free(distinct_invariants); for(int i = 0; i < nmax; i++) mat_clear(matrices[i]); free(matrices); coxeter_clear(group); mpq_clears(m, t, tmp, NULL); mps_context_free(solver); }