#include "enumerate_triangle_group.h" #include "linalg.h" int solve_characteristic_polynomial(mps_context *solv, mps_monomial_poly *poly, mpq_t tr, mpq_t trinv, double *eigenvalues) { mpq_t coeff1, coeff2, zero; cplx_t *roots; double radii[3]; double *radii_p[3]; mps_boolean errors; int result = 0; mpq_inits(coeff1, coeff2, zero, NULL); mpq_set(coeff1, trinv); mpq_sub(coeff2, zero, tr); mps_monomial_poly_set_coefficient_int(solv, poly, 0, -1, 0); mps_monomial_poly_set_coefficient_q(solv, poly, 1, coeff1, zero); mps_monomial_poly_set_coefficient_q(solv, poly, 2, coeff2, zero); mps_monomial_poly_set_coefficient_int(solv, poly, 3, 1, 0); mps_context_set_input_poly(solv, (mps_polynomial*)poly); mps_mpsolve(solv); roots = cplx_valloc(3); for(int i = 0; i < 3; i++) radii_p[i] = &(radii[i]); mps_context_get_roots_d(solv, &roots, radii_p); errors = mps_context_has_errors(solv); if(errors) { result = 1; } else { for(int i = 0; i < 3; i++) { eigenvalues[i] = cplx_Re(roots[i]); if(fabs(cplx_Im(roots[i])) > radii[i]) // non-real root result = 2; } } cplx_vfree(roots); mpq_clears(coeff1, coeff2, zero, NULL); return result; } void continued_fraction_approximation(mpq_t out, double in, int level) { mpq_t tmp; if(in < 0) { mpq_init(tmp); mpq_set_ui(tmp, 0, 1); continued_fraction_approximation(out, -in, level); mpq_sub(out, tmp, out); mpq_clear(tmp); return; } if(level == 0) { mpq_set_si(out, (signed long int)round(in), 1); // floor(in) } else { continued_fraction_approximation(out, 1/(in - floor(in)), level - 1); mpq_init(tmp); mpq_set_ui(tmp, 1, 1); mpq_div(out, tmp, out); // out -> 1/out mpq_set_si(tmp, (signed long int)in, 1); // floor(in) mpq_add(out, out, tmp); mpq_clear(tmp); } } void quartic(NUMBER out, NUMBER in, int a, int b, int c, int d, int e) { NUMBER tmp; INIT(tmp); SET_INT(out, a); MUL(out, out, in); SET_INT(tmp, b); ADD(out, out, tmp); MUL(out, out, in); SET_INT(tmp, c); ADD(out, out, tmp); MUL(out, out, in); SET_INT(tmp, d); ADD(out, out, tmp); MUL(out, out, in); SET_INT(tmp, e); ADD(out, out, tmp); CLEAR(tmp); } // discriminant of the polynomial z^3 - x z^2 + y z - 1 // that is the function x^2 y^2 - 4 x^3 - 4 y^3 - 27 + 18 xy void discriminant(NUMBER out, NUMBER x, NUMBER y) { NUMBER x2, x3, y2, y3, tmp; INIT(x2);INIT(x3);INIT(y2);INIT(y3);INIT(tmp); MUL(x2, x, x); MUL(x3, x2, x); MUL(y2, y, y); MUL(y3, y2, y); MUL(out, x2, y2); SET_INT(tmp, -4); MUL(tmp, tmp, x3); ADD(out, out, tmp); SET_INT(tmp, -4); MUL(tmp, tmp, y3); ADD(out, out, tmp); SET_INT(tmp, -27); ADD(out, out, tmp); SET_INT(tmp, 18); MUL(tmp, tmp, x); MUL(tmp, tmp, y); ADD(out, out, tmp); CLEAR(x2);CLEAR(x3);CLEAR(y2);CLEAR(y3);CLEAR(tmp); } void generators_triangle_rotation_generic(mat *gen, NUMBER rho1, NUMBER rho2, NUMBER rho3, NUMBER s, NUMBER q) { mat_workspace *ws; mat r1,r2,r3; NUMBER b1,c1,a2,c2,a3,b3; NUMBER sinv; ws = mat_workspace_init(3); INIT(sinv);INIT(b1);INIT(c1);INIT(a2);INIT(c2);INIT(a3);INIT(b3); mat_init(r1, 3); mat_init(r2, 3); mat_init(r3, 3); // sinv = s^{-1} SET_INT(sinv, 1); DIV(sinv, sinv, s); // c1 = rho2 q, a2 = rho3 q, b3 = rho1 q, b1 = c2 = a3 = 1/q MUL(c1, rho2, q); MUL(a2, rho3, q); MUL(b3, rho1, q); SET_INT(b1, 1); SET_INT(c2, 1); SET_INT(a3, 1); DIV(b1, b1, q); DIV(c2, c2, q); DIV(a3, a3, q); mat_zero(r1); mat_zero(r2); mat_zero(r3); SET_INT(*mat_ref(r1, 0, 0), -1); SET_INT(*mat_ref(r1, 1, 1), 1); SET_INT(*mat_ref(r1, 2, 2), 1); SET_INT(*mat_ref(r2, 0, 0), 1); SET_INT(*mat_ref(r2, 1, 1), -1); SET_INT(*mat_ref(r2, 2, 2), 1); SET_INT(*mat_ref(r3, 0, 0), 1); SET_INT(*mat_ref(r3, 1, 1), 1); SET_INT(*mat_ref(r3, 2, 2), -1); SET(*mat_ref(r1, 1, 0), b1); SET(*mat_ref(r1, 2, 0), c1); SET(*mat_ref(r2, 0, 1), a2); SET(*mat_ref(r2, 2, 1), c2); SET(*mat_ref(r3, 0, 2), a3); SET(*mat_ref(r3, 1, 2), b3); mat_zero(gen[0]); mat_zero(gen[1]); mat_zero(gen[2]); // gen[0] = diag(1,s^{-1},s) SET_INT(*mat_ref(gen[0], 0, 0), 1); mat_set(gen[0], 1, 1, sinv); mat_set(gen[0], 2, 2, s); // gen[1] = diag(s,1,s^{-1}) mat_set(gen[1], 0, 0, s); SET_INT(*mat_ref(gen[1], 1, 1), 1); mat_set(gen[1], 2, 2, sinv); // gen[3] = diag(s^{-1},s,1) mat_set(gen[2], 0, 0, sinv); mat_set(gen[2], 1, 1, s); SET_INT(*mat_ref(gen[2], 2, 2), 1); // gen[0] = r2 * gen[0] * r3 // gen[1] = r3 * gen[1] * r1 // gen[2] = r1 * gen[2] * r2 mat_multiply(ws, gen[0], r2, gen[0]); mat_multiply(ws, gen[0], gen[0], r3); mat_multiply(ws, gen[1], r3, gen[1]); mat_multiply(ws, gen[1], gen[1], r1); mat_multiply(ws, gen[2], r1, gen[2]); mat_multiply(ws, gen[2], gen[2], r2); // gen[3] = gen[0]^{-1} // gen[4] = gen[1]^{-1} // gen[5] = gen[2]^{-1} mat_pseudoinverse(ws, gen[3], gen[0]); mat_pseudoinverse(ws, gen[4], gen[1]); mat_pseudoinverse(ws, gen[5], gen[2]); mat_workspace_clear(ws); CLEAR(sinv);CLEAR(b1);CLEAR(c1);CLEAR(a2);CLEAR(c2);CLEAR(a3);CLEAR(b3); mat_clear(r1); mat_clear(r2); mat_clear(r3); } #ifdef QEXT_TRIVIAL // p1,p2,p3 are only allowed to be 2,3,4,6 void generators_triangle_rotation_2346_rational(mat *gen, int p1, int p2, int p3, mpq_t s, mpq_t q) { mpq_t rho1, rho2, rho3; mpq_inits(rho1,rho2,rho3,NULL); // rho_i = s^2 + 2s cos(2 pi / p_i) + 1 // coefficient 2 is the value for p=infinity, not sure if that would even work quartic(rho1, s, 0, 0, 1, p1 == 2 ? -2 : p1 == 3 ? -1 : p1 == 4 ? 0 : p1 == 6 ? 1 : 2, 1); quartic(rho2, s, 0, 0, 1, p2 == 2 ? -2 : p2 == 3 ? -1 : p2 == 4 ? 0 : p2 == 6 ? 1 : 2, 1); quartic(rho3, s, 0, 0, 1, p3 == 2 ? -2 : p3 == 3 ? -1 : p3 == 4 ? 0 : p3 == 6 ? 1 : 2, 1); generators_triangle_rotation_generic(gen, rho1, rho2, rho3, s, q); mpq_clears(rho1,rho2,rho3,NULL); } #endif #ifdef QEXT_SQRT5 void generators_triangle_rotation_555_barbot(mat *gen, mpq_t s_, mpq_t q_) { NUMBER rho, c, one, s, q; INIT(rho);INIT(c);INIT(one);INIT(s);INIT(q); // c = - (1+sqrt(5))/2 mpq_set_si(c[0], -1, 2); mpq_set_si(c[1], -1, 2); SET_ONE(one); mpq_set(s[0], s_); mpq_set_ui(s[1], 0, 1); mpq_set(q[0], q_); mpq_set_ui(q[1], 0, 1); SET(rho, one); MUL(rho, rho, s); ADD(rho, rho, c); MUL(rho, rho, s); ADD(rho, rho, one); generators_triangle_rotation_generic(gen, rho, rho, rho, s, q); CLEAR(rho);CLEAR(c);CLEAR(one);CLEAR(s);CLEAR(q); } #endif char *print_word(groupelement_t *g, char *str) { int i = g->length - 1; str[g->length] = 0; while(g->parent) { str[i--] = 'a' + g->letter; g = g->parent; } return str; } void enumerate_triangle_rotation_subgroup(group_t *group, mat *gen, mat *matrices) { mat_workspace *ws; mat tmp; char buf[100], buf2[100], buf3[100]; // allocate stuff ws = mat_workspace_init(3); mat_init(tmp, 3); // initialize_triangle_generators(ws, gen, p1, p2, p3, s, q); mat_identity(matrices[0]); for(int i = 1; i < group->size; i++) { if(group->elements[i].length % 2 != 0) continue; if(!group->elements[i].inverse) continue; if(!group->elements[i].need_to_compute) continue; int parent = group->elements[i].parent->id; int grandparent = group->elements[i].parent->parent->id; int letter; if(group->elements[parent].letter == 1 && group->elements[i].letter == 2) letter = 0; // p = bc else if(group->elements[parent].letter == 2 && group->elements[i].letter == 0) letter = 1; // q = ca else if(group->elements[parent].letter == 0 && group->elements[i].letter == 1) letter = 2; // r = ab if(group->elements[parent].letter == 2 && group->elements[i].letter == 1) letter = 3; // p^{-1} = cb else if(group->elements[parent].letter == 0 && group->elements[i].letter == 2) letter = 4; // q^{-1} = ac else if(group->elements[parent].letter == 1 && group->elements[i].letter == 0) letter = 5; // r^{-1} = ba mat_multiply(ws, matrices[i], matrices[grandparent], gen[letter]); } // free stuff mat_clear(tmp); mat_workspace_clear(ws); }