long-reid-thistlethwaite groups with rationals
This commit is contained in:
parent
c566a8741e
commit
b7c7d7245c
@ -9,7 +9,33 @@
|
||||
#define MAX_ELEMENTS 14000
|
||||
//#define DRAW_PICTURE 1
|
||||
|
||||
void mpq_quartic(mpq_t out, mpq_t in, int a, int b, int c, int d, int e)
|
||||
void continued_fraction_approximation(mpq_t out, double in, int level)
|
||||
{
|
||||
mpq_t tmp;
|
||||
|
||||
if(in < 0) {
|
||||
mpq_init(tmp);
|
||||
mpq_set_ui(tmp, 0, 1);
|
||||
continued_fraction_approximation(out, -in, level);
|
||||
mpq_sub(out, tmp, out);
|
||||
mpq_clear(tmp);
|
||||
return;
|
||||
}
|
||||
|
||||
if(level == 0) {
|
||||
mpq_set_si(out, (signed long int)round(in), 1); // floor(in)
|
||||
} else {
|
||||
continued_fraction_approximation(out, 1/(in - floor(in)), level - 1);
|
||||
mpq_init(tmp);
|
||||
mpq_set_ui(tmp, 1, 1);
|
||||
mpq_div(out, tmp, out); // out -> 1/out
|
||||
mpq_set_si(tmp, (signed long int)in, 1); // floor(in)
|
||||
mpq_add(out, out, tmp);
|
||||
mpq_clear(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
void quartic(mpq_t out, mpq_t in, int a, int b, int c, int d, int e)
|
||||
{
|
||||
mpq_t tmp;
|
||||
mpq_init(tmp);
|
||||
@ -46,12 +72,12 @@ void initialize_triangle_generators(mat_workspace *ws, mat *gen, mpq_t s, mpq_t
|
||||
mpq_set_ui(*mat_ref(gen[1], 0, 0), 1, 1);
|
||||
mpq_set_ui(*mat_ref(gen[1], 1, 0), 0, 1);
|
||||
mpq_set_ui(*mat_ref(gen[1], 2, 0), 0, 1);
|
||||
mpq_quartic(*mat_ref(gen[1], 0, 1), t, 0, 0, 1, -1, 2);
|
||||
mpq_quartic(*mat_ref(gen[1], 1, 1), t, 0, 0, -1, 2, -2);
|
||||
mpq_quartic(*mat_ref(gen[1], 2, 1), t, 0, 0, 1, -3, 3);
|
||||
mpq_quartic(*mat_ref(gen[1], 0, 2), t, 0, 0, 1, 0, 3);
|
||||
mpq_quartic(*mat_ref(gen[1], 1, 2), t, 0, 0, -1, 1, -1);
|
||||
mpq_quartic(*mat_ref(gen[1], 2, 2), t, 0, 0, 1, -2, 1);
|
||||
quartic(*mat_ref(gen[1], 0, 1), t, 0, 0, 1, -1, 2);
|
||||
quartic(*mat_ref(gen[1], 1, 1), t, 0, 0, -1, 2, -2);
|
||||
quartic(*mat_ref(gen[1], 2, 1), t, 0, 0, 1, -3, 3);
|
||||
quartic(*mat_ref(gen[1], 0, 2), t, 0, 0, 1, 0, 3);
|
||||
quartic(*mat_ref(gen[1], 1, 2), t, 0, 0, -1, 1, -1);
|
||||
quartic(*mat_ref(gen[1], 2, 2), t, 0, 0, 1, -2, 1);
|
||||
|
||||
mat_pseudoinverse(ws, gen[3], gen[0]); // p^{-1}
|
||||
mat_pseudoinverse(ws, gen[4], gen[1]); // q^{-1}
|
||||
@ -79,37 +105,19 @@ char *print_word(groupelement_t *g, char *str)
|
||||
return str;
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
void enumerate(groupelement_t *group, mat *matrices, mpq_t s, mpq_t t)
|
||||
{
|
||||
groupelement_t *group;
|
||||
mat_workspace *ws;
|
||||
mat *matrices;
|
||||
mat tmp;
|
||||
mat gen[6];
|
||||
char buf[100], buf2[100], buf3[100];
|
||||
mpq_t s,t;
|
||||
mpq_t det, tr, trinv;
|
||||
|
||||
// allocate stuff
|
||||
group = malloc(MAX_ELEMENTS*sizeof(groupelement_t));
|
||||
ws = mat_workspace_init(3);
|
||||
matrices = malloc(MAX_ELEMENTS*sizeof(mat));
|
||||
for(int i = 0; i < MAX_ELEMENTS; i++)
|
||||
mat_init(matrices[i], 3);
|
||||
for(int i = 0; i < 6; i++)
|
||||
mat_init(gen[i], 3);
|
||||
mat_init(tmp, 3);
|
||||
|
||||
mpq_inits(s, t, det, tr, trinv, NULL);
|
||||
|
||||
mpq_set_ui(s,1,1);
|
||||
double t_ = atof(argv[1]);
|
||||
mpq_set_ui(t,(int)(t_*100),100);
|
||||
mpq_canonicalize(s);
|
||||
mpq_canonicalize(t);
|
||||
|
||||
// the real action
|
||||
generate_triangle_group(group, MAX_ELEMENTS, 3, 3, 4);
|
||||
initialize_triangle_generators(ws, gen, s, t);
|
||||
|
||||
mat_identity(matrices[0]);
|
||||
@ -139,35 +147,110 @@ int main(int argc, char *argv[])
|
||||
mat_multiply(ws, matrices[i], matrices[grandparent], gen[letter]);
|
||||
}
|
||||
|
||||
// free stuff
|
||||
for(int i = 0; i < 6; i++)
|
||||
mat_clear(gen[i]);
|
||||
mat_clear(tmp);
|
||||
mat_workspace_clear(ws);
|
||||
}
|
||||
|
||||
void output_invariants(groupelement_t *group, mat *matrices, mpq_t s, mpq_t t)
|
||||
{
|
||||
mpq_t tr, trinv;
|
||||
char buf[100];
|
||||
|
||||
mpq_inits(tr, trinv, NULL);
|
||||
|
||||
for(int i = 0; i < MAX_ELEMENTS; i++) {
|
||||
if(group[i].length % 2 != 0)
|
||||
continue;
|
||||
if(!group[i].inverse)
|
||||
if(group[i].length % 2 != 0 || !group[i].inverse)
|
||||
continue;
|
||||
|
||||
mat_trace(tr, matrices[i]);
|
||||
mat_trace(trinv, matrices[group[i].inverse->id]);
|
||||
|
||||
double lambda1, lambda2, lambda3;
|
||||
// int realevs = gsl_poly_solve_cubic(-mpq_get_d(tr), mpq_get_d(trinv), -1, &lambda3, &lambda2, &lambda1);
|
||||
// if(realevs != 3)
|
||||
// continue;
|
||||
// if(lambda1 < 0 || lambda2 < 0 || lambda3 < 0)
|
||||
// continue;
|
||||
|
||||
// gmp_printf("%d %d %s %Qd %Qd\n", i, group[i].length, print_word(&group[i], buf), tr, trinv);
|
||||
printf("%d %d %s %f %f %f\n", i, group[i].length, print_word(&group[i], buf), log(mpq_get_d(tr)), log(mpq_get_d(trinv)));
|
||||
|
||||
gmp_printf("%d %d %s %Qd %Qd %f %f\n", i, group[i].length, print_word(&group[i], buf), tr, trinv, log(mpq_get_d(tr)), log(mpq_get_d(trinv)));
|
||||
}
|
||||
|
||||
// free stuff
|
||||
for(int i = 0; i < MAX_ELEMENTS; i++)
|
||||
mat_clear(matrices[i]);
|
||||
for(int i = 0; i < 6; i++)
|
||||
mat_clear(gen[i]);
|
||||
mat_clear(tmp);
|
||||
mpq_clears(s, t, det, tr, trinv, NULL);
|
||||
mat_workspace_clear(ws);
|
||||
mpq_clears(tr, trinv, NULL);
|
||||
}
|
||||
|
||||
double max_slope(groupelement_t *group, mat *matrices, mpq_t s, mpq_t t, int *index)
|
||||
{
|
||||
double max = 0;
|
||||
double slope;
|
||||
|
||||
mpq_t tr, trinv;
|
||||
char buf[100];
|
||||
|
||||
mpq_inits(tr, trinv, NULL);
|
||||
|
||||
for(int i = 0; i < MAX_ELEMENTS; i++) {
|
||||
if(group[i].length % 2 != 0 || !group[i].inverse)
|
||||
continue;
|
||||
|
||||
mat_trace(tr, matrices[i]);
|
||||
mat_trace(trinv, matrices[group[i].inverse->id]);
|
||||
|
||||
slope = log(mpq_get_d(trinv))/log(mpq_get_d(tr));
|
||||
if(slope > max)
|
||||
{
|
||||
*index = i;
|
||||
max = slope;
|
||||
}
|
||||
}
|
||||
|
||||
mpq_clears(tr, trinv, NULL);
|
||||
|
||||
return max;
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
mpq_t s, t, tmp;
|
||||
mpz_t accuracy;
|
||||
double t_;
|
||||
mat *matrices;
|
||||
groupelement_t *group;
|
||||
int index;
|
||||
|
||||
mpq_inits(s, t, tmp, NULL);
|
||||
mpz_init(accuracy);
|
||||
group = malloc(MAX_ELEMENTS*sizeof(groupelement_t));
|
||||
matrices = malloc(MAX_ELEMENTS*sizeof(mat));
|
||||
for(int i = 0; i < MAX_ELEMENTS; i++)
|
||||
mat_init(matrices[i], 3);
|
||||
|
||||
// mpq_set_str(t, argv[1], 10);
|
||||
mpz_set_ui(accuracy, 100);
|
||||
for(int i = 0; ; i++) {
|
||||
mpq_set(t, tmp);
|
||||
continued_fraction_approximation(tmp, atof(argv[1]), i);
|
||||
if(mpz_cmp(mpq_numref(tmp),accuracy) > 0 && mpz_cmp(mpq_denref(tmp),accuracy) > 0)
|
||||
break;
|
||||
}
|
||||
mpq_canonicalize(t);
|
||||
gmp_fprintf(stdout, "\"t = %Qd = %.3f\"\n", mpq_get_d(t), t);
|
||||
|
||||
if(argc > 2 && strcmp(argv[2],"p") == 0) {
|
||||
gmp_fprintf(stdout, "%Qd\n", t);
|
||||
return 0;
|
||||
}
|
||||
|
||||
generate_triangle_group(group, MAX_ELEMENTS, 3, 3, 4);
|
||||
|
||||
// for(int i = 0; i < 10; i++) {
|
||||
// mpq_set_ui(t,100+i,100);
|
||||
// mpq_canonicalize(t);
|
||||
|
||||
enumerate(group, matrices, s, t);
|
||||
//printf("%f %f\n", mpq_get_d(t), max_slope(group, matrices, s, t, &index));
|
||||
output_invariants(group, matrices, s, t);
|
||||
// }
|
||||
|
||||
for(int i = 0; i < MAX_ELEMENTS; i++)
|
||||
mat_clear(matrices[i]);
|
||||
free(matrices);
|
||||
free(group);
|
||||
mpq_clears(s, t, tmp, NULL);
|
||||
mpz_clear(accuracy);
|
||||
}
|
||||
|
@ -3,7 +3,7 @@ if(!exists("logs")) logs = log(1.0)
|
||||
|
||||
file = sprintf("< ./singular_values %f", exp(logt))
|
||||
#title = sprintf("s = %f, t = %f", exp(logs), exp(logt))
|
||||
title = sprintf("t = %.3f", floor(exp(logt)*100)/100.0)
|
||||
title = sprintf("t = %.3f", exp(logt))
|
||||
# print title
|
||||
|
||||
set zeroaxis
|
||||
@ -23,7 +23,7 @@ set parametric
|
||||
tr(a,b) = exp(a) + exp(b-a) + exp(-b)
|
||||
trinv(a,b) = exp(-a) + exp(a-b) + exp(b)
|
||||
|
||||
plot file using 4:5 w p pt 7 ps 0.5 lc 1 t title, \
|
||||
plot file using 6:7 w p pt 7 ps 0.5 lc 1 t columnheader, \
|
||||
log(tr(t,t*2)),log(trinv(t,2*t)) w l lw 2 t "", \
|
||||
log(tr(t,t/2)),log(trinv(t,t/2)) w l lw 2 t ""
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user