compute whether a representation in the barbot component of the (5,5,5) group is (almost) all loxodromic

This commit is contained in:
Florian Stecker 2022-04-13 19:23:38 -05:00
parent 7f6ad68f53
commit 721b139307
7 changed files with 843 additions and 104 deletions

1
.gitignore vendored
View File

@ -3,6 +3,7 @@ triangle_group/singular_values
.#* .#*
singular_values singular_values
singular_values_mpi singular_values_mpi
singular_values_barbot
output/ output/
special_element special_element
max_slope_picture/generate max_slope_picture/generate

View File

@ -1,8 +1,8 @@
HEADERS=linalg.h mat.h coxeter.h enumerate_triangle_group.h parallel.h HEADERS=linalg.h mat.h coxeter.h enumerate_triangle_group.h parallel.h
#SPECIAL_OPTIONS=-O0 -g -D_DEBUG SPECIAL_OPTIONS=-O0 -g -D_DEBUG -DQEXT_SQRT5
#SPECIAL_OPTIONS=-O3 -pg -g -funroll-loops -fno-inline #SPECIAL_OPTIONS=-O3 -pg -g -funroll-loops -fno-inline
SPECIAL_OPTIONS=-O3 -flto -funroll-loops -Winline #SPECIAL_OPTIONS=-O3 -flto -funroll-loops -Winline -DQEXT_SQRT5
#SPECIAL_OPTIONS=-O3 -flto -funroll-loops -Winline -mavx512f -mavx512cd -mavx512er -mavx512pf # KNL #SPECIAL_OPTIONS=-O3 -flto -funroll-loops -Winline -mavx512f -mavx512cd -mavx512er -mavx512pf # KNL
#SPECIAL_OPTIONS= #SPECIAL_OPTIONS=
@ -19,6 +19,9 @@ billiard_words: billiard_words.hs
singular_values: singular_values.o coxeter.o mat.o enumerate_triangle_group.o parallel.o singular_values: singular_values.o coxeter.o mat.o enumerate_triangle_group.o parallel.o
mpicc $(OPTIONS) -o singular_values coxeter.o singular_values.o mat.o enumerate_triangle_group.o parallel.o -lm -lgmp -lmps mpicc $(OPTIONS) -o singular_values coxeter.o singular_values.o mat.o enumerate_triangle_group.o parallel.o -lm -lgmp -lmps
singular_values_barbot: singular_values_barbot.o coxeter.o mat.o enumerate_triangle_group.o parallel.o
mpicc $(OPTIONS) -o singular_values_barbot coxeter.o singular_values_barbot.o mat.o enumerate_triangle_group.o parallel.o -lm -lgmp -lmps
#singular_values_mpi: singular_values_mpi.o coxeter.o mat.o #singular_values_mpi: singular_values_mpi.o coxeter.o mat.o
# mpicc $(OPTIONS) -o singular_values_mpi coxeter.o singular_values_mpi.o mat.o -lm -lgmp -lmps # mpicc $(OPTIONS) -o singular_values_mpi coxeter.o singular_values_mpi.o mat.o -lm -lgmp -lmps
@ -28,6 +31,9 @@ special_element: special_element.o coxeter.o linalg.o mat.o enumerate_triangle_g
singular_values.o: singular_values.c $(HEADERS) singular_values.o: singular_values.c $(HEADERS)
gcc $(OPTIONS) -c singular_values.c gcc $(OPTIONS) -c singular_values.c
singular_values_barbot.o: singular_values_barbot.c $(HEADERS)
gcc $(OPTIONS) -c singular_values_barbot.c
#singular_values_mpi.o: singular_values_mpi.c $(HEADERS) #singular_values_mpi.o: singular_values_mpi.c $(HEADERS)
# mpicc $(OPTIONS) -c singular_values_mpi.c # mpicc $(OPTIONS) -c singular_values_mpi.c
@ -50,4 +56,4 @@ parallel.o: parallel.c $(HEADERS)
gcc $(OPTIONS) -c parallel.c gcc $(OPTIONS) -c parallel.c
clean: clean:
rm -f singular_values special_element singular_values_mpi coxeter.o linalg.o singular_values.o singular_values_mpi.o mat.o special_element.o convert.hi convert.o convert billiard_words.hi billiard_words.o billiard_words enumerate_triangle_group.o parallel.o rm -f singular_values singular_values_barbot special_element singular_values_mpi coxeter.o linalg.o singular_values.o singular_values_barbot.o singular_values_mpi.o mat.o special_element.o convert.hi convert.o convert billiard_words.hi billiard_words.o billiard_words enumerate_triangle_group.o parallel.o

View File

@ -70,100 +70,131 @@ void continued_fraction_approximation(mpq_t out, double in, int level)
} }
} }
void quartic(mpq_t out, mpq_t in, int a, int b, int c, int d, int e) void quartic(NUMBER out, NUMBER in, int a, int b, int c, int d, int e)
{ {
mpq_t tmp; NUMBER tmp;
mpq_init(tmp); INIT(tmp);
mpq_set_si(out, a, 1); SET_INT(out, a);
mpq_mul(out, out, in);
mpq_set_si(tmp, b, 1);
mpq_add(out, out, tmp);
mpq_mul(out, out, in);
mpq_set_si(tmp, c, 1);
mpq_add(out, out, tmp);
mpq_mul(out, out, in);
mpq_set_si(tmp, d, 1);
mpq_add(out, out, tmp);
mpq_mul(out, out, in);
mpq_set_si(tmp, e, 1);
mpq_add(out, out, tmp);
mpq_clear(tmp); MUL(out, out, in);
SET_INT(tmp, b);
ADD(out, out, tmp);
MUL(out, out, in);
SET_INT(tmp, c);
ADD(out, out, tmp);
MUL(out, out, in);
SET_INT(tmp, d);
ADD(out, out, tmp);
MUL(out, out, in);
SET_INT(tmp, e);
ADD(out, out, tmp);
CLEAR(tmp);
} }
// p1,p2,p3 are only allowed to be 2,3,4,6 // discriminant of the polynomial z^3 - x z^2 + y z - 1
void initialize_triangle_generators(mat_workspace *ws, mat *gen, int p1, int p2, int p3, mpq_t s, mpq_t q) // that is the function x^2 y^2 - 4 x^3 - 4 y^3 - 27 + 18 xy
void discriminant(NUMBER out, NUMBER x, NUMBER y)
{ {
mat r1,r2,r3; NUMBER x2, x3, y2, y3, tmp;
mpq_t rho1, rho2, rho3; INIT(x2);INIT(x3);INIT(y2);INIT(y3);INIT(tmp);
mpq_t b1,c1,a2,c2,a3,b3;
mpq_t sinv;
mpq_inits(sinv,rho1,rho2,rho3,b1,c1,a2,c2,a3,b3,NULL); MUL(x2, x, x);
MUL(x3, x2, x);
MUL(y2, y, y);
MUL(y3, y2, y);
MUL(out, x2, y2);
SET_INT(tmp, -4);
MUL(tmp, tmp, x3);
ADD(out, out, tmp);
SET_INT(tmp, -4);
MUL(tmp, tmp, y3);
ADD(out, out, tmp);
SET_INT(tmp, -27);
ADD(out, out, tmp);
SET_INT(tmp, 18);
MUL(tmp, tmp, x);
MUL(tmp, tmp, y);
ADD(out, out, tmp);
CLEAR(x2);CLEAR(x3);CLEAR(y2);CLEAR(y3);CLEAR(tmp);
}
void generators_triangle_rotation_generic(mat *gen, NUMBER rho1, NUMBER rho2, NUMBER rho3, NUMBER s, NUMBER q)
{
mat_workspace *ws;
mat r1,r2,r3;
NUMBER b1,c1,a2,c2,a3,b3;
NUMBER sinv;
ws = mat_workspace_init(3);
INIT(sinv);INIT(b1);INIT(c1);INIT(a2);INIT(c2);INIT(a3);INIT(b3);
mat_init(r1, 3); mat_init(r1, 3);
mat_init(r2, 3); mat_init(r2, 3);
mat_init(r3, 3); mat_init(r3, 3);
// sinv = s^{-1} // sinv = s^{-1}
mpq_set_ui(sinv, 1, 1); SET_INT(sinv, 1);
mpq_div(sinv, sinv, s); DIV(sinv, sinv, s);
// rho_i = s^2 + 2s cos(2 pi / p_i) + 1
// coefficient 2 is the value for p=infinity, not sure if that would even work
quartic(rho1, s, 0, 0, 1, p1 == 2 ? -2 : p1 == 3 ? -1 : p1 == 4 ? 0 : p1 == 6 ? 1 : 2, 1);
quartic(rho2, s, 0, 0, 1, p2 == 2 ? -2 : p2 == 3 ? -1 : p2 == 4 ? 0 : p2 == 6 ? 1 : 2, 1);
quartic(rho3, s, 0, 0, 1, p3 == 2 ? -2 : p3 == 3 ? -1 : p3 == 4 ? 0 : p3 == 6 ? 1 : 2, 1);
// c1 = rho2 q, a2 = rho3 q, b3 = rho1 q, b1 = c2 = a3 = 1/q // c1 = rho2 q, a2 = rho3 q, b3 = rho1 q, b1 = c2 = a3 = 1/q
mpq_mul(c1, rho2, q); MUL(c1, rho2, q);
mpq_mul(a2, rho3, q); MUL(a2, rho3, q);
mpq_mul(b3, rho1, q); MUL(b3, rho1, q);
mpq_set_ui(b1, 1, 1); SET_INT(b1, 1);
mpq_set_ui(c2, 1, 1); SET_INT(c2, 1);
mpq_set_ui(a3, 1, 1); SET_INT(a3, 1);
mpq_div(b1, b1, q); DIV(b1, b1, q);
mpq_div(c2, c2, q); DIV(c2, c2, q);
mpq_div(a3, a3, q); DIV(a3, a3, q);
mat_zero(r1); mat_zero(r1);
mat_zero(r2); mat_zero(r2);
mat_zero(r3); mat_zero(r3);
mpq_set_si(*mat_ref(r1, 0, 0), -1, 1); SET_INT(*mat_ref(r1, 0, 0), -1);
mpq_set_si(*mat_ref(r1, 1, 1), 1, 1); SET_INT(*mat_ref(r1, 1, 1), 1);
mpq_set_si(*mat_ref(r1, 2, 2), 1, 1); SET_INT(*mat_ref(r1, 2, 2), 1);
mpq_set_si(*mat_ref(r2, 0, 0), 1, 1); SET_INT(*mat_ref(r2, 0, 0), 1);
mpq_set_si(*mat_ref(r2, 1, 1), -1, 1); SET_INT(*mat_ref(r2, 1, 1), -1);
mpq_set_si(*mat_ref(r2, 2, 2), 1, 1); SET_INT(*mat_ref(r2, 2, 2), 1);
mpq_set_si(*mat_ref(r3, 0, 0), 1, 1); SET_INT(*mat_ref(r3, 0, 0), 1);
mpq_set_si(*mat_ref(r3, 1, 1), 1, 1); SET_INT(*mat_ref(r3, 1, 1), 1);
mpq_set_si(*mat_ref(r3, 2, 2), -1, 1); SET_INT(*mat_ref(r3, 2, 2), -1);
mpq_set(*mat_ref(r1, 1, 0), b1); SET(*mat_ref(r1, 1, 0), b1);
mpq_set(*mat_ref(r1, 2, 0), c1); SET(*mat_ref(r1, 2, 0), c1);
mpq_set(*mat_ref(r2, 0, 1), a2); SET(*mat_ref(r2, 0, 1), a2);
mpq_set(*mat_ref(r2, 2, 1), c2); SET(*mat_ref(r2, 2, 1), c2);
mpq_set(*mat_ref(r3, 0, 2), a3); SET(*mat_ref(r3, 0, 2), a3);
mpq_set(*mat_ref(r3, 1, 2), b3); SET(*mat_ref(r3, 1, 2), b3);
mat_zero(gen[0]); mat_zero(gen[0]);
mat_zero(gen[1]); mat_zero(gen[1]);
mat_zero(gen[2]); mat_zero(gen[2]);
// gen[0] = diag(1,s^{-1},s) // gen[0] = diag(1,s^{-1},s)
mpq_set_ui(*mat_ref(gen[0], 0, 0), 1, 1); SET_INT(*mat_ref(gen[0], 0, 0), 1);
mat_set(gen[0], 1, 1, sinv); mat_set(gen[0], 1, 1, sinv);
mat_set(gen[0], 2, 2, s); mat_set(gen[0], 2, 2, s);
// gen[1] = diag(s,1,s^{-1}) // gen[1] = diag(s,1,s^{-1})
mat_set(gen[1], 0, 0, s); mat_set(gen[1], 0, 0, s);
mpq_set_ui(*mat_ref(gen[1], 1, 1), 1, 1); SET_INT(*mat_ref(gen[1], 1, 1), 1);
mat_set(gen[1], 2, 2, sinv); mat_set(gen[1], 2, 2, sinv);
// gen[3] = diag(s^{-1},s,1) // gen[3] = diag(s^{-1},s,1)
mat_set(gen[2], 0, 0, sinv); mat_set(gen[2], 0, 0, sinv);
mat_set(gen[2], 1, 1, s); mat_set(gen[2], 1, 1, s);
mpq_set_ui(*mat_ref(gen[2], 2, 2), 1, 1); SET_INT(*mat_ref(gen[2], 2, 2), 1);
// gen[0] = r2 * gen[0] * r3 // gen[0] = r2 * gen[0] * r3
// gen[1] = r3 * gen[1] * r1 // gen[1] = r3 * gen[1] * r1
@ -182,24 +213,60 @@ void initialize_triangle_generators(mat_workspace *ws, mat *gen, int p1, int p2,
mat_pseudoinverse(ws, gen[4], gen[1]); mat_pseudoinverse(ws, gen[4], gen[1]);
mat_pseudoinverse(ws, gen[5], gen[2]); mat_pseudoinverse(ws, gen[5], gen[2]);
/* mat_workspace_clear(ws);
mat_print(r1); CLEAR(sinv);CLEAR(b1);CLEAR(c1);CLEAR(a2);CLEAR(c2);CLEAR(a3);CLEAR(b3);
mat_print(r2);
mat_print(r3);
mat_print(gen[0]);
mat_print(gen[1]);
mat_print(gen[2]);
mat_print(gen[3]);
mat_print(gen[4]);
mat_print(gen[5]);
*/
mpq_clears(sinv,rho1,rho2,rho3,b1,c1,a2,c2,a3,b3,NULL);
mat_clear(r1); mat_clear(r1);
mat_clear(r2); mat_clear(r2);
mat_clear(r3); mat_clear(r3);
} }
#ifdef QEXT_TRIVIAL
// p1,p2,p3 are only allowed to be 2,3,4,6
void generators_triangle_rotation_2346_rational(mat *gen, int p1, int p2, int p3, mpq_t s, mpq_t q)
{
mpq_t rho1, rho2, rho3;
mpq_inits(rho1,rho2,rho3,NULL);
// rho_i = s^2 + 2s cos(2 pi / p_i) + 1
// coefficient 2 is the value for p=infinity, not sure if that would even work
quartic(rho1, s, 0, 0, 1, p1 == 2 ? -2 : p1 == 3 ? -1 : p1 == 4 ? 0 : p1 == 6 ? 1 : 2, 1);
quartic(rho2, s, 0, 0, 1, p2 == 2 ? -2 : p2 == 3 ? -1 : p2 == 4 ? 0 : p2 == 6 ? 1 : 2, 1);
quartic(rho3, s, 0, 0, 1, p3 == 2 ? -2 : p3 == 3 ? -1 : p3 == 4 ? 0 : p3 == 6 ? 1 : 2, 1);
generators_triangle_rotation_generic(gen, rho1, rho2, rho3, s, q);
mpq_clears(rho1,rho2,rho3,NULL);
}
#endif
#ifdef QEXT_SQRT5
void generators_triangle_rotation_555_barbot(mat *gen, mpq_t s_, mpq_t q_)
{
NUMBER rho, c, one, s, q;
INIT(rho);INIT(c);INIT(one);INIT(s);INIT(q);
// c = - (1+sqrt(5))/2
mpq_set_si(c[0], -1, 2);
mpq_set_si(c[1], -1, 2);
SET_ONE(one);
mpq_set(s[0], s_);
mpq_set_ui(s[1], 0, 1);
mpq_set(q[0], q_);
mpq_set_ui(q[1], 0, 1);
SET(rho, one);
MUL(rho, rho, s);
ADD(rho, rho, c);
MUL(rho, rho, s);
ADD(rho, rho, one);
generators_triangle_rotation_generic(gen, rho, rho, rho, s, q);
CLEAR(rho);CLEAR(c);CLEAR(one);CLEAR(s);CLEAR(q);
}
#endif
char *print_word(groupelement_t *g, char *str) char *print_word(groupelement_t *g, char *str)
{ {
int i = g->length - 1; int i = g->length - 1;
@ -213,20 +280,17 @@ char *print_word(groupelement_t *g, char *str)
return str; return str;
} }
void enumerate(group_t *group, mat *matrices, int p1, int p2, int p3, mpq_t s, mpq_t q) void enumerate_triangle_rotation_subgroup(group_t *group, mat *gen, mat *matrices)
{ {
mat_workspace *ws; mat_workspace *ws;
mat tmp; mat tmp;
mat gen[6];
char buf[100], buf2[100], buf3[100]; char buf[100], buf2[100], buf3[100];
// allocate stuff // allocate stuff
ws = mat_workspace_init(3); ws = mat_workspace_init(3);
for(int i = 0; i < 6; i++)
mat_init(gen[i], 3);
mat_init(tmp, 3); mat_init(tmp, 3);
initialize_triangle_generators(ws, gen, p1, p2, p3, s, q); // initialize_triangle_generators(ws, gen, p1, p2, p3, s, q);
mat_identity(matrices[0]); mat_identity(matrices[0]);
for(int i = 1; i < group->size; i++) { for(int i = 1; i < group->size; i++) {
@ -258,8 +322,6 @@ void enumerate(group_t *group, mat *matrices, int p1, int p2, int p3, mpq_t s, m
} }
// free stuff // free stuff
for(int i = 0; i < 6; i++)
mat_clear(gen[i]);
mat_clear(tmp); mat_clear(tmp);
mat_workspace_clear(ws); mat_workspace_clear(ws);
} }

View File

@ -6,12 +6,25 @@
#include <mps/mps.h> #include <mps/mps.h>
// rational only functions
int solve_characteristic_polynomial(mps_context *solv, mps_monomial_poly *poly, mpq_t tr, mpq_t trinv, double *eigenvalues); int solve_characteristic_polynomial(mps_context *solv, mps_monomial_poly *poly, mpq_t tr, mpq_t trinv, double *eigenvalues);
void continued_fraction_approximation(mpq_t out, double in, int level); void continued_fraction_approximation(mpq_t out, double in, int level);
void quartic(mpq_t out, mpq_t in, int a, int b, int c, int d, int e);
// p1,p2,p3 are only allowed to be 2,3,4,6 // geneartors
void initialize_triangle_generators(mat_workspace *ws, mat *gen, int p1, int p2, int p3, mpq_t s, mpq_t q); void generators_triangle_rotation_generic(mat *gen, NUMBER rho1, NUMBER rho2, NUMBER rho3, NUMBER s, NUMBER q);
#ifdef QEXT_TRIVIAL
void generators_triangle_rotation_2346_rational(mat *gen, int p1, int p2, int p3, mpq_t s, mpq_t q);
#endif
#ifdef QEXT_SQRT5
void generators_triangle_rotation_555_barbot(mat *gen, mpq_t s, mpq_t q);
#endif
// general functions
void quartic(NUMBER out, NUMBER in, int a, int b, int c, int d, int e);
void discriminant(NUMBER out, NUMBER x, NUMBER y);
char *print_word(groupelement_t *g, char *str); char *print_word(groupelement_t *g, char *str);
void enumerate(group_t *group, mat *matrices, int p1, int p2, int p3, mpq_t s, mpq_t t); void enumerate_triangle_rotation_subgroup(group_t *group, mat *gen, mat *matrices);
#endif #endif

14
mat.c
View File

@ -78,7 +78,7 @@ static void mat_multiply_outofplace(mat_workspace *ws, mat out, mat in1, mat in2
LOOP(i,n) LOOP(j,n) { LOOP(i,n) LOOP(j,n) {
SET_ZERO(M(out,i,j)); SET_ZERO(M(out,i,j));
LOOP(k,n) { LOOP(k,n) {
MULTIPLY(*tmp, M(in1,i,k), M(in2,k,j)); MUL(*tmp, M(in1,i,k), M(in2,k,j));
ADD(M(out,i,j), M(out,i,j), *tmp); ADD(M(out,i,j), M(out,i,j), *tmp);
} }
} }
@ -103,12 +103,12 @@ void mat_det(mat_workspace *ws, NUMBER out, mat in)
SET_ZERO(out); SET_ZERO(out);
LOOP(i,n) { LOOP(i,n) {
MULTIPLY(*tmp, M(in,0,i), M(in,1,(i+1)%3)); MUL(*tmp, M(in,0,i), M(in,1,(i+1)%3));
MULTIPLY(*tmp, *tmp, M(in,2,(i+2)%3)); MUL(*tmp, *tmp, M(in,2,(i+2)%3));
ADD(out, out, *tmp); ADD(out, out, *tmp);
MULTIPLY(*tmp, M(in,0,(i+2)%3), M(in,1,(i+1)%3)); MUL(*tmp, M(in,0,(i+2)%3), M(in,1,(i+1)%3));
MULTIPLY(*tmp, *tmp, M(in,2,i)); MUL(*tmp, *tmp, M(in,2,i));
SUB(out, out, *tmp); SUB(out, out, *tmp);
} }
} }
@ -121,8 +121,8 @@ static void mat_pseudoinverse_outofplace(mat_workspace *ws, mat out, mat in)
int n = 3; int n = 3;
LOOP(i,n) LOOP(j,n) { LOOP(i,n) LOOP(j,n) {
MULTIPLY(*tmp, M(in,(i+1)%3,(j+1)%3), M(in,(i+2)%3,(j+2)%3)); MUL(*tmp, M(in,(i+1)%3,(j+1)%3), M(in,(i+2)%3,(j+2)%3));
MULTIPLY(*tmp2, M(in,(i+1)%3,(j+2)%3), M(in,(i+2)%3,(j+1)%3)); MUL(*tmp2, M(in,(i+1)%3,(j+2)%3), M(in,(i+2)%3,(j+1)%3));
SUB(M(out,j,i), *tmp, *tmp2); SUB(M(out,j,i), *tmp, *tmp2);
} }
} }

130
mat.h
View File

@ -8,27 +8,139 @@
// library for matrix computations in variable rings (based on GMP types) // library for matrix computations in variable rings (based on GMP types)
#ifdef QEXT_SQRT5
typedef mpq_t NUMBER [2];
#define INIT(x) do { mpq_init((x)[0]); mpq_init((x)[1]); } while(0)
#define CLEAR(x) do { mpq_clear((x)[0]); mpq_clear((x)[1]); } while(0)
#define SET(x,y) do { mpq_set((x)[0],(y)[0]); mpq_set((x)[1],(y)[1]); } while(0)
#define SET_INT(x,y) do { mpq_set_si((x)[0],(y),1); mpq_set_si((x)[1],0,1); } while(0)
#define SET_ZERO(x) SET_INT(x,0)
#define SET_ONE(x) SET_INT(x,1)
#define ADD(x,y,z) do { mpq_add((x)[0],(y)[0],(z)[0]); mpq_add((x)[1],(y)[1],(z)[1]); } while(0)
#define SUB(x,y,z) do { mpq_sub((x)[0],(y)[0],(z)[0]); mpq_sub((x)[1],(y)[1],(z)[1]); } while(0)
#define MUL multiply_sqrt5
#define DIV divide_sqrt5
#define CMP compare_sqrt5
#define PRINT(x) gmp_printf("%Qd + %Qd*sqrt(5)", (x)[0], (x)[1])
#define SPRINT(buf, x) gmp_sprintf(buf, "%Qd+%Qd*sqrt(5)", (x)[0], (x)[1])
static void multiply_sqrt5(NUMBER out, NUMBER a, NUMBER b)
{
// could be in place!!!
mpq_t tmp, result[2];
mpq_inits(tmp, result[0], result[1], 0);
mpq_mul(result[0], a[1], b[1]);
mpq_set_si(tmp, 5, 1);
mpq_mul(result[0], result[0], tmp);
mpq_mul(tmp, a[0], b[0]);
mpq_add(result[0], result[0], tmp);
mpq_mul(result[1], a[1], b[0]);
mpq_mul(tmp, a[0], b[1]);
mpq_add(result[1], result[1], tmp);
mpq_set(out[0], result[0]);
mpq_set(out[1], result[1]);
mpq_clears(tmp, result[0], result[1], 0);
}
static void divide_sqrt5(NUMBER out, NUMBER a, NUMBER b)
{
mpq_t denom, num, tmp, neg5, result[2];
mpq_inits(denom, num, tmp, neg5, result[0], result[1], 0);
mpq_set_si(neg5, -5, 1);
mpq_mul(denom, b[1], b[1]);
mpq_mul(denom, denom, neg5);
mpq_mul(tmp, b[0], b[0]);
mpq_add(denom, denom, tmp);
mpq_mul(num, a[1], b[1]);
mpq_mul(num, num, neg5);
mpq_mul(tmp, a[0], b[0]);
mpq_add(num, num, tmp);
mpq_div(result[0], num, denom);
mpq_mul(num, a[1], b[0]);
mpq_mul(tmp, a[0], b[1]);
mpq_sub(num, num, tmp);
mpq_div(result[1], num, denom);
mpq_set(out[0], result[0]);
mpq_set(out[1], result[1]);
mpq_clears(denom, num, tmp, neg5, result[0], result[1], 0);
}
static int compare_sqrt5(NUMBER x, NUMBER y)
{
int result;
mpq_t p, q, p2, q2, c5;
mpq_inits(p, q, p2, q2, c5, 0);
mpq_sub(p, x[0], y[0]);
mpq_sub(q, x[1], y[1]);
/* /*
needed features: want to know if p + sqrt(5) q > 0
x multiply matrices if p>0 and q>0: always true
- inverse if p>0 and q<0: equivalent to |p|^2 > 5 |q|^2
x pseudoinverse if p<0 and q>0: equivalent to |p|^2 < 5 |q|^2
x set if p<0 and q<0: always false
- eigenvalues
*/ */
if(mpq_sgn(p) > 0 && mpq_sgn(q) > 0) {
result = 1;
goto done;
}
if(mpq_sgn(p) < 0 && mpq_sgn(q) < 0) {
result = -1;
goto done;
}
mpq_mul(p2, p, p);
mpq_mul(q2, q, q);
mpq_set_si(c5, 5, 1);
mpq_mul(q2, q2, c5);
if(mpq_sgn(p) > 0)
result = mpq_cmp(p2, q2); // this can't be zero, or else |p/q| = sqrt(5), but it's irrational
else if(mpq_sgn(p) < 0)
result = -mpq_cmp(p2, q2); // this can be zero if p = 0 and q = 0
else // p = 0
return mpq_sgn(q);
done:
mpq_clears(p, q, p2, q2, c5, 0);
return result;
}
#endif
#ifdef QEXT_TRIVIAL
#define NUMBER mpq_t #define NUMBER mpq_t
#define INIT mpq_init #define INIT mpq_init
#define CLEAR mpq_clear #define CLEAR mpq_clear
#define SET mpq_set #define SET mpq_set
#define SET_ZERO(x) mpq_set_ui(x,0,1) #define SET_INT(x,y) mpq_set_si(x,y,1)
#define SET_ONE(x) mpq_set_ui(x,1,1) #define SET_ZERO(x) SET_INT(x,0)
#define SET_ONE(x) SET_INT(x,1)
#define ADD mpq_add #define ADD mpq_add
#define SUB mpq_sub #define SUB mpq_sub
#define MULTIPLY mpq_mul #define MUL mpq_mul
#define DIV mpq_div #define DIV mpq_div
#define PRINT(x) gmp_printf("%Qd", x) #define PRINT(x) gmp_printf("%Qd", x)
#endif
#define M(m,i,j) ((m)->x[(i)+(m)->n*(j)]) #define M(m,i,j) ((m)->x[(i)+(m)->n*(j)])
struct _mat{ struct _mat{

545
singular_values_barbot.c Normal file
View File

@ -0,0 +1,545 @@
#include "coxeter.h"
#include "linalg.h"
#include "mat.h"
#include "enumerate_triangle_group.h"
#include "parallel.h"
#include <time.h>
#define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0);
//#define DEBUG(msg, ...) fprintf(stderr, "[%003d%10.3f] " msg, mpi_rank(0), runtime(), ##__VA_ARGS__)
#define DEBUG(msg, ...)
#define INFO(msg, ...) fprintf(stderr, "[%003d%10.3f] " msg, mpi_rank(0), runtime(), ##__VA_ARGS__)
struct result {
int id;
NUMBER tr;
NUMBER trinv;
int disc_sign;
};
// we want as much as possible to be node data, except if it is only known to the main node
// (command line arguments) or should only be computed once (id list)
struct global_data {
// command line arguments
unsigned int nmax;
unsigned int p1, p2, p3;
unsigned int sstart, send, sdenom;
unsigned int qstart, qend, qdenom;
unsigned int *id_list;
unsigned int id_list_length;
};
struct node_data {
group_t *group;
mat* matrices;
struct result *invariants;
struct result **distinct_invariants;
int distinct_invariants_length;
mps_context *solver;
};
struct input_data {
unsigned int snum, sden;
unsigned int qnum, qden;
};
struct output_data {
int has_non_loxodromic;
};
static int compare_result(const void *a_, const void *b_)
{
int d = 0;
struct result **a = (struct result **)a_;
struct result **b = (struct result **)b_;
d = CMP((*a)->tr,(*b)->tr);
if(d == 0) {
d = CMP((*a)->trinv, (*b)->trinv);
}
return d;
}
static int compare_result_by_id(const void *a_, const void *b_)
{
int d = 0;
struct result **a = (struct result **)a_;
struct result **b = (struct result **)b_;
return (*a)->id - (*b)->id;
}
static int compare_result_by_tr_trinv_id(const void *a_, const void *b_)
{
int d = 0;
struct result **a = (struct result **)a_;
struct result **b = (struct result **)b_;
d = CMP((*a)->tr,(*b)->tr);
if(d == 0) {
d = CMP((*a)->trinv, (*b)->trinv);
if(d == 0) {
d = (*b)->id - (*a)->id;
}
}
return d;
}
/*
static int compare_result_by_slope(const void *a_, const void *b_)
{
int d = 0;
struct result **a = (struct result **)a_;
struct result **b = (struct result **)b_;
double slopea = (*a)->x / (*a)->y;
double slopeb = (*b)->x / (*b)->y;
return slopea > slopeb ? -1 : slopea < slopeb ? 1 : 0;
}
*/
int invariants_trace_loxodromic(group_t *group, mat *matrices, struct result **invariants, int *n, int unique)
{
int ntraces = *n, nuniq; // ntraces is the number of traces we are asked to compute, nuniq is the number of unique ones after we eliminate duplicates
// compute the traces
for(int i = 0; i < ntraces; i++) {
int id = invariants[i]->id;
int invid = group->elements[id].inverse->id;
mat_trace(invariants[i]->tr, matrices[id]);
mat_trace(invariants[i]->trinv, matrices[invid]);
}
// throw out duplicates if unique == 1
if(!unique)
nuniq = ntraces;
else {
qsort(invariants, ntraces, sizeof(struct result*), compare_result);
nuniq = 0;
for(int i = 0; i < ntraces; i++) {
if(i == 0 || compare_result(&invariants[i], &invariants[nuniq-1]) != 0) {
invariants[nuniq] = invariants[i];
nuniq++;
} else {
int oldlength = group->elements[invariants[nuniq-1]->id].length;
int newlength = group->elements[invariants[i]->id].length;
if(newlength < oldlength)
invariants[nuniq-1]->id = invariants[i]->id;
}
}
}
// check if loxodromic
NUMBER disc, zero;
INIT(disc);
INIT(zero);
SET_ZERO(zero);
for(int i = 0; i < nuniq; i++) {
discriminant(disc, invariants[i]->tr, invariants[i]->trinv);
invariants[i]->disc_sign = CMP(disc, zero);
}
CLEAR(disc);
CLEAR(zero);
// sort by ID again
qsort(invariants, nuniq, sizeof(struct result*), compare_result_by_id);
*n = nuniq;
return 0;
}
/*
int invariants_trace_slope(group_t *group, mat *matrices, struct result **invariants, int *n, int unique)
{
mpq_t tmp;
mps_context *solver;
mps_monomial_poly *poly;
int index;
int ntraces = *n, nuniq;
int retval;
double evs[3];
char buf[100];
// DEBUG("Compute traces\n");
for(int i = 0; i < ntraces; i++) {
int id = invariants[i]->id;
int invid = group->elements[id].inverse->id;
mat_trace(invariants[i]->tr, matrices[id]);
mat_trace(invariants[i]->trinv, matrices[invid]);
}
if(!unique)
nuniq = ntraces;
else {
// DEBUG("Get unique traces\n");
qsort(invariants, ntraces, sizeof(struct result*), compare_result);
nuniq = 0;
for(int i = 0; i < ntraces; i++) {
if(i == 0 || compare_result(&invariants[i], &invariants[nuniq-1]) != 0) {
invariants[nuniq] = invariants[i];
nuniq++;
} else {
int oldlength = group->elements[invariants[nuniq-1]->id].length;
int newlength = group->elements[invariants[i]->id].length;
if(newlength < oldlength)
invariants[nuniq-1]->id = invariants[i]->id;
}
}
}
DEBUG("Solve characteristic polynomials\n");
solver = mps_context_new();
poly = mps_monomial_poly_new(solver, 3);
mps_context_set_output_prec(solver, 20); // relative precision
mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE);
for(int i = 0; i < nuniq; i++) {
retval = solve_characteristic_polynomial(solver, poly, invariants[i]->tr, invariants[i]->trinv, evs);
if(retval == 1) {
fprintf(stderr, "Error! Could not solve polynomial.\n");
continue;
} else if(retval == 2) {
continue;
}
if(fabs(evs[0]) < fabs(evs[1]))
SWAP(double, evs[0], evs[1]);
if(fabs(evs[1]) < fabs(evs[2]))
SWAP(double, evs[1], evs[2]);
if(fabs(evs[0]) < fabs(evs[1]))
SWAP(double, evs[0], evs[1]);
double x = log(fabs(evs[0]));
double y = -log(fabs(evs[2]));
invariants[i]->x = x;
invariants[i]->y = y;
invariants[i]->slope = y/x;
}
mps_context_free(solver);
qsort(invariants, nuniq, sizeof(struct result*), compare_result_by_id);
*n = nuniq;
return 0;
}
*/
/*
long check_memory_usage(mat *matrices, int n)
{
mpq_t x;
long total;
for(int i = 0; i < n; i++)
{
LOOP(j,3) LOOP(k,3) {
total += mpq_numref(M(matrices[i], j, k))->_mp_size;
total += mpq_denref(M(matrices[i], j, k))->_mp_size;
}
}
return total;
}
*/
void destroy_node(const void *_g, void *_n)
{
struct global_data *g = (struct global_data *)_g;
struct node_data *n = (struct node_data *)_n;
for(int i = 0; i < g->nmax; i++) {
CLEAR(n->invariants[i].tr);
CLEAR(n->invariants[i].trinv);
}
free(n->invariants);
free(n->distinct_invariants);
for(int i = 0; i < g->nmax; i++)
mat_clear(n->matrices[i]);
free(n->matrices);
coxeter_clear(n->group);
}
int init_node(const void *_g, void *_n)
{
struct global_data *g = (struct global_data *)_g;
struct node_data *n = (struct node_data *)_n;
DEBUG("Allocate\n");
g->id_list = (int*)(g+1); // pointers get scrambled by transmission, reconstruct
n->matrices = malloc(g->nmax*sizeof(mat));
for(int i = 0; i < g->nmax; i++)
mat_init(n->matrices[i], 3);
n->invariants = malloc(g->nmax*sizeof(struct result));
n->distinct_invariants = malloc(g->nmax*sizeof(struct result)); // we won't need that many, but just in case
for(int i = 0; i < g->nmax; i++) {
INIT(n->invariants[i].tr);
INIT(n->invariants[i].trinv);
n->invariants[i].id = i;
}
// order of the triangle reflection generators: a, b, c
// order of the rotation orders: bc, ac, ab
DEBUG("Generate group\n");
n->group = coxeter_init_triangle(g->p1, g->p2, g->p3, g->nmax);
return 0;
}
int process_output(group_t *group, mat *matrices, struct result **invariants, int invariants_length, struct output_data *out)
{
out->has_non_loxodromic = 0;
for(int i = 0; i < invariants_length; i++) {
if(invariants[i]->disc_sign <= 0 && invariants[i]->id != 0 && invariants[i]->id != 4 && invariants[i]->id != 22) {
out->has_non_loxodromic = 1;
}
}
}
int do_computation(const void *_g, void *_n, const void *_in, void *_out)
{
struct global_data *g = (struct global_data *)_g;
struct node_data *n = (struct node_data *)_n;
struct input_data *in = (struct input_data *)_in;
struct output_data *out = (struct output_data *)_out;
mpq_t s, q;
mpq_inits(s, q, NULL);
mpq_set_ui(s, in->snum, in->sden);
mpq_set_ui(q, in->qnum, in->qden);
INFO("Computing represention with s = %d/%d and q = %d/%d.\n",
in->snum, in->sden,
in->qnum, in->qden);
// we need to compute all the elements pointed to in id_list, and all their suffixes or prefixes
// I can imagine a smarter way of doing this which checks if there is a shorter route to the element
for(int i = 0; i < n->group->size; i++)
n->group->elements[i].need_to_compute = 0;
n->group->elements[0].need_to_compute = 1;
int needed_elements = 1;
for(int i = 0; i < g->id_list_length; i++)
{
int id = g->id_list[i];
n->distinct_invariants[i] = &n->invariants[id];
groupelement_t *cur = &n->group->elements[id];
while(cur->need_to_compute == 0) {
cur->need_to_compute = 1;
needed_elements++;
cur = cur->parent->parent; // also need to compute its even-length ancestors
}
cur = n->group->elements[id].inverse;
while(cur->need_to_compute == 0) {
cur->need_to_compute = 1;
needed_elements++;
cur = cur->parent->parent;
}
}
n->distinct_invariants_length = g->id_list_length;
DEBUG("Need to compute %d elements to get %d traces up to reflection length %d\n",
needed_elements, g->id_list_length, n->group->elements[n->group->size-1].length);
DEBUG("Compute matrices\n");
mat gen[6];
for(int i = 0; i < 6; i++)
mat_init(gen[i], 3);
generators_triangle_rotation_555_barbot(gen, s, q);
enumerate_triangle_rotation_subgroup(n->group, gen, n->matrices);
for(int i = 0; i < 6; i++)
mat_clear(gen[i]);
DEBUG("Compute invariants\n");
invariants_trace_loxodromic(
n->group, n->matrices,
n->distinct_invariants, &n->distinct_invariants_length, 1);
// DEBUG("Find max slopes\n");
process_output(n->group, n->matrices, n->distinct_invariants, n->distinct_invariants_length, out);
mpq_clears(s, q, NULL);
return 0;
}
int main(int argc, char *argv[])
{
char buf[1000];
char buf2[1000];
char buf3[1000];
struct global_data *g;
struct node_data n;
start_timer();
// parse command line arguments
if(argc < 11) {
fprintf(stderr, "Usage: %s <N> <p1> <p2> <p3> <s start> <s end> <s denom> <q start> <q end> <q denom> [restart]\n", argv[0]);
exit(1);
}
int nmax = atoi(argv[1]);
g = (struct global_data*)malloc(sizeof(struct global_data) + nmax*sizeof(int));
g->id_list = (int*)(g+1);
g->nmax = nmax;
g->p1 = atoi(argv[2]);
g->p2 = atoi(argv[3]);
g->p3 = atoi(argv[4]);
g->sstart = atoi(argv[5]);
g->send = atoi(argv[6]);
g->sdenom = atoi(argv[7]);
g->qstart = atoi(argv[8]);
g->qend = atoi(argv[9]);
g->qdenom = atoi(argv[10]);
// initialize
parallel_context *ctx = parallel_init();
parallel_set_datasize_and_callbacks(ctx, init_node, do_computation, destroy_node,
sizeof(struct global_data) + g->nmax*sizeof(int),
sizeof(struct node_data),
sizeof(struct input_data),
sizeof(struct output_data));
if(ctx->mpi_mode == 1 && ctx->rank != 0) {
// worker mode
parallel_work(ctx);
parallel_destroy(ctx);
exit(0);
}
init_node(g, &n);
// use very generic values for the pilot run unless sstart=send and qstart=qend
struct input_data pilot_input;
struct output_data pilot_output;
if(g->sstart == g->send && g->qstart == g->qend) {
pilot_input.snum = g->sstart;
pilot_input.sden = g->sdenom;
pilot_input.qnum = g->qstart;
pilot_input.qden = g->qdenom;
DEBUG("Single run for s = %d/%d, q = %d/%d\n", g->sstart, g->sdenom, g->qstart, g->qdenom);
} else {
pilot_input.snum = 4;
pilot_input.sden = 100;
pilot_input.qnum = 7;
pilot_input.qden = 100;
DEBUG("Initial run for s = %d/%d, q = %d/%d\n", 4, 100, 7, 100);
}
g->id_list_length = 0;
for(int i = 0; i < n.group->size; i++)
if(n.group->elements[i].length % 2 == 0 && n.group->elements[i].inverse)
g->id_list[g->id_list_length++] = i;
do_computation(g, &n, &pilot_input, &pilot_output);
for(int i = 0; i < n.distinct_invariants_length; i++)
g->id_list[i] = n.distinct_invariants[i]->id;
g->id_list_length = n.distinct_invariants_length;
if(g->sstart != g->send || g->qstart != g->qend) {
struct input_data *inputs = malloc((g->send - g->sstart + 1)*(g->qend - g->qstart + 1)*sizeof(struct input_data));
struct output_data *outputs = malloc((g->send - g->sstart + 1)*(g->qend - g->qstart + 1)*sizeof(struct input_data));
int njobs = 0;
for(int sloop = g->sstart; sloop <= g->send; sloop++) {
for(int qloop = g->qstart; qloop <= g->qend; qloop++) {
inputs[njobs].sden = g->sdenom;
inputs[njobs].qden = g->qdenom;
inputs[njobs].snum = sloop;
inputs[njobs].qnum = qloop;
njobs++;
}
}
if(argc >= 12)
parallel_run(ctx, g, inputs, outputs, njobs, argv[11]);
else
parallel_run(ctx, g, inputs, outputs, njobs, NULL);
// DEBUG("Loop for s = %d/%d, q = %d/%d\n", sloop, g->sdenom, qloop, g->qdenom);
for(int i = 0; i < njobs; i++)
{
/*
gmp_printf("%d/%d %d/%d %d %s %f\n",
inputs[i].snum, inputs[i].sden, inputs[i].qnum, inputs[i].qden,
outputs[i].max_slope_id,
print_word(&n.group->elements[outputs[i].max_slope_id], buf),
outputs[i].max_slope);
*/
printf("%d/%d %d/%d %d\n",
inputs[i].snum, inputs[i].sden, inputs[i].qnum, inputs[i].qden,
outputs[i].has_non_loxodromic);
}
free(inputs);
free(outputs);
} else {
// output
for(int i = 0; i < n.distinct_invariants_length; i++) {
// exclude tr = trinv = 2/1/0/-1/3
/*
mpq_t tmp;
mpq_init(tmp);
mpq_set_si(tmp, 2, 1);
if(mpq_cmp(n.distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(n.distinct_invariants[i]->trinv, tmp) == 0)
continue;
mpq_set_si(tmp, 1, 1);
if(mpq_cmp(n.distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(n.distinct_invariants[i]->trinv, tmp) == 0)
continue;
mpq_set_si(tmp, 0, 1);
if(mpq_cmp(n.distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(n.distinct_invariants[i]->trinv, tmp) == 0)
continue;
mpq_set_si(tmp, -1, 1);
if(mpq_cmp(n.distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(n.distinct_invariants[i]->trinv, tmp) == 0)
continue;
mpq_set_si(tmp, 3, 1);
if(mpq_cmp(n.distinct_invariants[i]->tr, tmp) == 0 &&
mpq_cmp(n.distinct_invariants[i]->trinv, tmp) == 0)
continue;
mpq_clear(tmp);
*/
SPRINT(buf, n.distinct_invariants[i]->tr);
SPRINT(buf2, n.distinct_invariants[i]->trinv);
printf("%d %s %f %f %d\n",
n.distinct_invariants[i]->id,
print_word(&n.group->elements[n.distinct_invariants[i]->id], buf3),
mpq_get_d(n.distinct_invariants[i]->tr[0])+sqrt(5)*mpq_get_d(n.distinct_invariants[i]->tr[1]),
mpq_get_d(n.distinct_invariants[i]->trinv[0])+sqrt(5)*mpq_get_d(n.distinct_invariants[i]->trinv[1]),
n.distinct_invariants[i]->disc_sign);
}
}
destroy_node(g, &n);
free(g);
parallel_destroy(ctx);
}