add special element program
This commit is contained in:
parent
528f329c59
commit
1ee211de70
277
special_element.c
Normal file
277
special_element.c
Normal file
@ -0,0 +1,277 @@
|
|||||||
|
#include "coxeter.h"
|
||||||
|
#include "linalg.h"
|
||||||
|
#include "mat.h"
|
||||||
|
|
||||||
|
#include <gsl/gsl_poly.h>
|
||||||
|
#include <mps/mps.h>
|
||||||
|
|
||||||
|
#define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0);
|
||||||
|
#define DEBUG(msg, ...)
|
||||||
|
|
||||||
|
int solve_characteristic_polynomial(mps_context *solv, mpq_t tr, mpq_t trinv, double *eigenvalues)
|
||||||
|
{
|
||||||
|
mpq_t coeff1, coeff2, zero;
|
||||||
|
cplx_t *roots;
|
||||||
|
double radii[3];
|
||||||
|
double *radii_p[3];
|
||||||
|
mps_monomial_poly *poly;
|
||||||
|
mps_boolean errors;
|
||||||
|
int result = 0;
|
||||||
|
|
||||||
|
mpq_inits(coeff1, coeff2, zero, NULL);
|
||||||
|
mpq_set(coeff1, trinv);
|
||||||
|
mpq_sub(coeff2, zero, tr);
|
||||||
|
|
||||||
|
poly = mps_monomial_poly_new(solv, 3);
|
||||||
|
mps_monomial_poly_set_coefficient_int(solv, poly, 0, -1, 0);
|
||||||
|
mps_monomial_poly_set_coefficient_q(solv, poly, 1, coeff1, zero);
|
||||||
|
mps_monomial_poly_set_coefficient_q(solv, poly, 2, coeff2, zero);
|
||||||
|
mps_monomial_poly_set_coefficient_int(solv, poly, 3, 1, 0);
|
||||||
|
|
||||||
|
mps_context_set_input_poly(solv, (mps_polynomial*)poly);
|
||||||
|
mps_mpsolve(solv);
|
||||||
|
|
||||||
|
roots = cplx_valloc(3);
|
||||||
|
for(int i = 0; i < 3; i++)
|
||||||
|
radii_p[i] = &(radii[i]);
|
||||||
|
mps_context_get_roots_d(solv, &roots, radii_p);
|
||||||
|
errors = mps_context_has_errors(solv);
|
||||||
|
|
||||||
|
if(errors) {
|
||||||
|
result = 1;
|
||||||
|
} else {
|
||||||
|
for(int i = 0; i < 3; i++) {
|
||||||
|
eigenvalues[i] = cplx_Re(roots[i]);
|
||||||
|
if(fabs(cplx_Im(roots[i])) > radii[i]) // non-real root
|
||||||
|
result = 2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cplx_vfree(roots);
|
||||||
|
mpq_clears(coeff1, coeff2, zero, NULL);
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// this version is only for the (4,4,4) group
|
||||||
|
void initialize_triangle_generators(mat_workspace *ws, mat *gen, mpq_t m, mpq_t t)
|
||||||
|
{
|
||||||
|
mpq_t s,sinv,q,x,y;
|
||||||
|
mpq_t zero, one, two;
|
||||||
|
mpq_t tmp;
|
||||||
|
|
||||||
|
mpq_inits(s,sinv,q,x,y,zero,one,two,tmp,NULL);
|
||||||
|
mpq_set_ui(zero, 0, 1);
|
||||||
|
mpq_set_ui(one, 1, 1);
|
||||||
|
mpq_set_ui(two, 2, 1);
|
||||||
|
|
||||||
|
// s = (1-m^2)/2m
|
||||||
|
mpq_mul(s, m, m);
|
||||||
|
mpq_sub(s, one, s);
|
||||||
|
mpq_div(s, s, m);
|
||||||
|
mpq_div(s, s, two);
|
||||||
|
mpq_div(sinv, one, s);
|
||||||
|
|
||||||
|
// q = (1+m^2)/(1-m^2) = 2/(1-m^2) - 1
|
||||||
|
mpq_mul(q, m, m);
|
||||||
|
mpq_sub(q, one, q);
|
||||||
|
mpq_div(q, two, q);
|
||||||
|
mpq_sub(q, q, one);
|
||||||
|
|
||||||
|
// x = -tq, y = -q/t
|
||||||
|
mpq_mul(x, q, t);
|
||||||
|
mpq_sub(x, zero, x);
|
||||||
|
mpq_div(y, q, t);
|
||||||
|
mpq_sub(y, zero, y);
|
||||||
|
|
||||||
|
// q^2 = xy = 1 + 1/s^2
|
||||||
|
// [ -s s*y 0]
|
||||||
|
// [ -s*x s*x*y - 1/s 0]
|
||||||
|
// [ -s*y s*y^2 - x 1]
|
||||||
|
LOOP(i,3) {
|
||||||
|
mat_zero(gen[i]);
|
||||||
|
mpq_sub(tmp, zero, s);
|
||||||
|
mat_set(gen[i%3], i%3, i%3, tmp);
|
||||||
|
mpq_mul(tmp, s, y);
|
||||||
|
mat_set(gen[i%3], i%3, (i+1)%3, tmp);
|
||||||
|
mpq_mul(tmp, s, x);
|
||||||
|
mpq_sub(tmp, zero, tmp);
|
||||||
|
mat_set(gen[i%3], (i+1)%3, i%3, tmp);
|
||||||
|
mpq_mul(tmp, s, x);
|
||||||
|
mpq_mul(tmp, tmp, y);
|
||||||
|
mpq_sub(tmp, tmp, sinv);
|
||||||
|
mat_set(gen[i%3], (i+1)%3, (i+1)%3, tmp);
|
||||||
|
mpq_mul(tmp, s, y);
|
||||||
|
mpq_sub(tmp, zero, tmp);
|
||||||
|
mat_set(gen[i%3], (i+2)%3, i%3, tmp);
|
||||||
|
mpq_mul(tmp, s, y);
|
||||||
|
mpq_mul(tmp, tmp, y);
|
||||||
|
mpq_sub(tmp, tmp, x);
|
||||||
|
mat_set(gen[i%3], (i+2)%3, (i+1)%3, tmp);
|
||||||
|
mat_set(gen[i%3], (i+2)%3, (i+2)%3, one);
|
||||||
|
}
|
||||||
|
|
||||||
|
LOOP(i,3) mat_pseudoinverse(ws, gen[i+3], gen[i]);
|
||||||
|
|
||||||
|
mpq_inits(s,sinv,q,x,y,zero,one,two,tmp,NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
char *print_word(groupelement_t *g, char *str)
|
||||||
|
{
|
||||||
|
int i = g->length - 1;
|
||||||
|
|
||||||
|
str[g->length] = 0;
|
||||||
|
while(g->parent) {
|
||||||
|
str[i--] = 'a' + g->letter;
|
||||||
|
g = g->parent;
|
||||||
|
}
|
||||||
|
|
||||||
|
return str;
|
||||||
|
}
|
||||||
|
|
||||||
|
void enumerate(group_t *group, mat *matrices, mpq_t m, mpq_t t)
|
||||||
|
{
|
||||||
|
mat_workspace *ws;
|
||||||
|
mat tmp;
|
||||||
|
mat gen[6];
|
||||||
|
char buf[100], buf2[100], buf3[100];
|
||||||
|
|
||||||
|
// allocate stuff
|
||||||
|
ws = mat_workspace_init(3);
|
||||||
|
for(int i = 0; i < 6; i++)
|
||||||
|
mat_init(gen[i], 3);
|
||||||
|
mat_init(tmp, 3);
|
||||||
|
|
||||||
|
initialize_triangle_generators(ws, gen, m, t);
|
||||||
|
|
||||||
|
mat_identity(matrices[0]);
|
||||||
|
for(int i = 1; i < group->size; i++) {
|
||||||
|
if(group->elements[i].length % 2 != 0)
|
||||||
|
continue;
|
||||||
|
if(!group->elements[i].inverse)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
int parent = group->elements[i].parent->id;
|
||||||
|
int grandparent = group->elements[i].parent->parent->id;
|
||||||
|
int letter;
|
||||||
|
|
||||||
|
if(group->elements[parent].letter == 1 && group->elements[i].letter == 2)
|
||||||
|
letter = 0; // p = bc
|
||||||
|
else if(group->elements[parent].letter == 2 && group->elements[i].letter == 0)
|
||||||
|
letter = 1; // q = ca
|
||||||
|
else if(group->elements[parent].letter == 0 && group->elements[i].letter == 1)
|
||||||
|
letter = 2; // r = ab
|
||||||
|
if(group->elements[parent].letter == 2 && group->elements[i].letter == 1)
|
||||||
|
letter = 3; // p^{-1} = cb
|
||||||
|
else if(group->elements[parent].letter == 0 && group->elements[i].letter == 2)
|
||||||
|
letter = 4; // q^{-1} = ac
|
||||||
|
else if(group->elements[parent].letter == 1 && group->elements[i].letter == 0)
|
||||||
|
letter = 5; // r^{-1} = ba
|
||||||
|
|
||||||
|
mat_multiply(ws, matrices[i], matrices[grandparent], gen[letter]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// free stuff
|
||||||
|
for(int i = 0; i < 6; i++)
|
||||||
|
mat_clear(gen[i]);
|
||||||
|
mat_clear(tmp);
|
||||||
|
mat_workspace_clear(ws);
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char *argv[])
|
||||||
|
{
|
||||||
|
mpq_t m, t, tmp;
|
||||||
|
double s;
|
||||||
|
mat_workspace *ws;
|
||||||
|
mat gen[6];
|
||||||
|
mps_context *solver;
|
||||||
|
mat element, inverse;
|
||||||
|
int letter1, letter2, letter;
|
||||||
|
mpq_t tr, trinv;
|
||||||
|
double x, y;
|
||||||
|
int retval;
|
||||||
|
double evs[3];
|
||||||
|
char buf[100];
|
||||||
|
|
||||||
|
DEBUG("Allocate\n");
|
||||||
|
|
||||||
|
mpq_inits(m, t, tmp, tr, trinv, NULL);
|
||||||
|
ws = mat_workspace_init(3);
|
||||||
|
for(int i = 0; i < 6; i++)
|
||||||
|
mat_init(gen[i], 3);
|
||||||
|
mat_init(element, 3);
|
||||||
|
mat_init(inverse, 3);
|
||||||
|
|
||||||
|
solver = mps_context_new();
|
||||||
|
mps_context_set_output_prec(solver, 20); // relative precision
|
||||||
|
mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE);
|
||||||
|
|
||||||
|
for(int i = 1; i <= 99; i++) {
|
||||||
|
for(int j = 1; j <= 100; j++) {
|
||||||
|
mpq_set_ui(t, j, 100);
|
||||||
|
mpq_set_ui(m, i, 100); // 414/1000 ~ sqrt(2)-1 <-> s=1
|
||||||
|
s = (1-mpq_get_d(m)*mpq_get_d(m))/(2*mpq_get_d(m));
|
||||||
|
|
||||||
|
DEBUG("Compute matrix\n");
|
||||||
|
initialize_triangle_generators(ws, gen, m, t);
|
||||||
|
|
||||||
|
mat_identity(element);
|
||||||
|
mat_identity(inverse);
|
||||||
|
for(int i = 0; i < strlen(argv[1]); i+=2) {
|
||||||
|
letter1 = argv[1][i] - 'a';
|
||||||
|
letter2 = argv[1][i+1] - 'a';
|
||||||
|
|
||||||
|
if(letter1 == 1 && letter2 == 2)
|
||||||
|
letter = 0; // p = bc
|
||||||
|
else if(letter1 == 2 && letter2 == 0)
|
||||||
|
letter = 1; // q = ca
|
||||||
|
else if(letter1 == 0 && letter2 == 1)
|
||||||
|
letter = 2; // r = ab
|
||||||
|
else if(letter1 == 2 && letter2 == 1)
|
||||||
|
letter = 3; // p^{-1} = cb
|
||||||
|
else if(letter1 == 0 && letter2 == 2)
|
||||||
|
letter = 4; // q^{-1} = ac
|
||||||
|
else if(letter1 == 1 && letter2 == 0)
|
||||||
|
letter = 5; // r^{-1} = ba
|
||||||
|
|
||||||
|
mat_multiply(ws, element, element, gen[letter]);
|
||||||
|
mat_multiply(ws, inverse, gen[(letter+3)%6], inverse);
|
||||||
|
}
|
||||||
|
|
||||||
|
DEBUG("Compute traces\n");
|
||||||
|
|
||||||
|
mat_trace(tr, element);
|
||||||
|
mat_trace(trinv, inverse);
|
||||||
|
|
||||||
|
DEBUG("Solve characteristic polynomials\n");
|
||||||
|
retval = solve_characteristic_polynomial(solver, tr, trinv, evs);
|
||||||
|
if(retval == 1) {
|
||||||
|
fprintf(stderr, "Error! Could not solve polynomial.\n");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(fabs(evs[0]) < fabs(evs[1]))
|
||||||
|
SWAP(double, evs[0], evs[1]);
|
||||||
|
if(fabs(evs[1]) < fabs(evs[2]))
|
||||||
|
SWAP(double, evs[1], evs[2]);
|
||||||
|
if(fabs(evs[0]) < fabs(evs[1]))
|
||||||
|
SWAP(double, evs[0], evs[1]);
|
||||||
|
|
||||||
|
x = log(fabs(evs[0]));
|
||||||
|
y = -log(fabs(evs[2]));
|
||||||
|
|
||||||
|
// gmp_printf("%Qd %Qd %f %f %f\n", tr, trinv, x, y, y/x);
|
||||||
|
gmp_printf("%.5f %.5f %.5f %.5f\n", mpq_get_d(t), mpq_get_d(m), s, y/x);
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
DEBUG("Clean up\n");
|
||||||
|
mpq_clears(m, t, tmp, tr, trinv, NULL);
|
||||||
|
mat_workspace_clear(ws);
|
||||||
|
for(int i = 0; i < 6; i++)
|
||||||
|
mat_clear(gen[i]);
|
||||||
|
mat_clear(element);
|
||||||
|
mat_clear(inverse);
|
||||||
|
mps_context_free(solver);
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user