add special element program
This commit is contained in:
		
							
								
								
									
										277
									
								
								special_element.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										277
									
								
								special_element.c
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,277 @@
 | 
				
			|||||||
 | 
					#include "coxeter.h"
 | 
				
			||||||
 | 
					#include "linalg.h"
 | 
				
			||||||
 | 
					#include "mat.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#include <gsl/gsl_poly.h>
 | 
				
			||||||
 | 
					#include <mps/mps.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#define SWAP(t,x,y) do { t _tmp = (x); (x) = (y); (y) = _tmp; } while (0);
 | 
				
			||||||
 | 
					#define DEBUG(msg, ...)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					int solve_characteristic_polynomial(mps_context *solv, mpq_t tr, mpq_t trinv, double *eigenvalues)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						mpq_t coeff1, coeff2, zero;
 | 
				
			||||||
 | 
						cplx_t *roots;
 | 
				
			||||||
 | 
						double radii[3];
 | 
				
			||||||
 | 
						double *radii_p[3];
 | 
				
			||||||
 | 
						mps_monomial_poly *poly;
 | 
				
			||||||
 | 
						mps_boolean errors;
 | 
				
			||||||
 | 
						int result = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						mpq_inits(coeff1, coeff2, zero, NULL);
 | 
				
			||||||
 | 
						mpq_set(coeff1, trinv);
 | 
				
			||||||
 | 
						mpq_sub(coeff2, zero, tr);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						poly = mps_monomial_poly_new(solv, 3);
 | 
				
			||||||
 | 
						mps_monomial_poly_set_coefficient_int(solv, poly, 0, -1, 0);
 | 
				
			||||||
 | 
						mps_monomial_poly_set_coefficient_q(solv, poly, 1, coeff1, zero);
 | 
				
			||||||
 | 
						mps_monomial_poly_set_coefficient_q(solv, poly, 2, coeff2, zero);
 | 
				
			||||||
 | 
						mps_monomial_poly_set_coefficient_int(solv, poly, 3, 1, 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						mps_context_set_input_poly(solv, (mps_polynomial*)poly);
 | 
				
			||||||
 | 
						mps_mpsolve(solv);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						roots = cplx_valloc(3);
 | 
				
			||||||
 | 
						for(int i = 0; i < 3; i++)
 | 
				
			||||||
 | 
							radii_p[i] = &(radii[i]);
 | 
				
			||||||
 | 
						mps_context_get_roots_d(solv, &roots, radii_p);
 | 
				
			||||||
 | 
						errors = mps_context_has_errors(solv);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						if(errors) {
 | 
				
			||||||
 | 
							result = 1;
 | 
				
			||||||
 | 
						} else {
 | 
				
			||||||
 | 
							for(int i = 0; i < 3; i++) {
 | 
				
			||||||
 | 
								eigenvalues[i] = cplx_Re(roots[i]);
 | 
				
			||||||
 | 
								if(fabs(cplx_Im(roots[i])) > radii[i]) // non-real root
 | 
				
			||||||
 | 
									result = 2;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						cplx_vfree(roots);
 | 
				
			||||||
 | 
						mpq_clears(coeff1, coeff2, zero, NULL);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						return result;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// this version is only for the (4,4,4) group
 | 
				
			||||||
 | 
					void initialize_triangle_generators(mat_workspace *ws, mat *gen, mpq_t m, mpq_t t)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						mpq_t s,sinv,q,x,y;
 | 
				
			||||||
 | 
						mpq_t zero, one, two;
 | 
				
			||||||
 | 
						mpq_t tmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						mpq_inits(s,sinv,q,x,y,zero,one,two,tmp,NULL);
 | 
				
			||||||
 | 
						mpq_set_ui(zero, 0, 1);
 | 
				
			||||||
 | 
						mpq_set_ui(one, 1, 1);
 | 
				
			||||||
 | 
						mpq_set_ui(two, 2, 1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// s = (1-m^2)/2m
 | 
				
			||||||
 | 
						mpq_mul(s, m, m);
 | 
				
			||||||
 | 
						mpq_sub(s, one, s);
 | 
				
			||||||
 | 
						mpq_div(s, s, m);
 | 
				
			||||||
 | 
						mpq_div(s, s, two);
 | 
				
			||||||
 | 
						mpq_div(sinv, one, s);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// q = (1+m^2)/(1-m^2) = 2/(1-m^2) - 1
 | 
				
			||||||
 | 
						mpq_mul(q, m, m);
 | 
				
			||||||
 | 
						mpq_sub(q, one, q);
 | 
				
			||||||
 | 
						mpq_div(q, two, q);
 | 
				
			||||||
 | 
						mpq_sub(q, q, one);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// x = -tq, y = -q/t
 | 
				
			||||||
 | 
						mpq_mul(x, q, t);
 | 
				
			||||||
 | 
						mpq_sub(x, zero, x);
 | 
				
			||||||
 | 
						mpq_div(y, q, t);
 | 
				
			||||||
 | 
						mpq_sub(y, zero, y);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// q^2 = xy = 1 + 1/s^2
 | 
				
			||||||
 | 
						// [         -s         s*y           0]
 | 
				
			||||||
 | 
						// [       -s*x s*x*y - 1/s           0]
 | 
				
			||||||
 | 
						// [       -s*y   s*y^2 - x           1]
 | 
				
			||||||
 | 
						LOOP(i,3) {
 | 
				
			||||||
 | 
							mat_zero(gen[i]);
 | 
				
			||||||
 | 
							mpq_sub(tmp, zero, s);
 | 
				
			||||||
 | 
							mat_set(gen[i%3], i%3, i%3, tmp);
 | 
				
			||||||
 | 
							mpq_mul(tmp, s, y);
 | 
				
			||||||
 | 
							mat_set(gen[i%3], i%3, (i+1)%3, tmp);
 | 
				
			||||||
 | 
							mpq_mul(tmp, s, x);
 | 
				
			||||||
 | 
							mpq_sub(tmp, zero, tmp);
 | 
				
			||||||
 | 
							mat_set(gen[i%3], (i+1)%3, i%3, tmp);
 | 
				
			||||||
 | 
							mpq_mul(tmp, s, x);
 | 
				
			||||||
 | 
							mpq_mul(tmp, tmp, y);
 | 
				
			||||||
 | 
							mpq_sub(tmp, tmp, sinv);
 | 
				
			||||||
 | 
							mat_set(gen[i%3], (i+1)%3, (i+1)%3, tmp);
 | 
				
			||||||
 | 
							mpq_mul(tmp, s, y);
 | 
				
			||||||
 | 
							mpq_sub(tmp, zero, tmp);
 | 
				
			||||||
 | 
							mat_set(gen[i%3], (i+2)%3, i%3, tmp);
 | 
				
			||||||
 | 
							mpq_mul(tmp, s, y);
 | 
				
			||||||
 | 
							mpq_mul(tmp, tmp, y);
 | 
				
			||||||
 | 
							mpq_sub(tmp, tmp, x);
 | 
				
			||||||
 | 
							mat_set(gen[i%3], (i+2)%3, (i+1)%3, tmp);
 | 
				
			||||||
 | 
							mat_set(gen[i%3], (i+2)%3, (i+2)%3, one);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						LOOP(i,3) mat_pseudoinverse(ws, gen[i+3], gen[i]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						mpq_inits(s,sinv,q,x,y,zero,one,two,tmp,NULL);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					char *print_word(groupelement_t *g, char *str)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int i = g->length - 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  str[g->length] = 0;
 | 
				
			||||||
 | 
					  while(g->parent) {
 | 
				
			||||||
 | 
					    str[i--] = 'a' + g->letter;
 | 
				
			||||||
 | 
					    g = g->parent;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return str;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void enumerate(group_t *group, mat *matrices, mpq_t m, mpq_t t)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						mat_workspace *ws;
 | 
				
			||||||
 | 
						mat tmp;
 | 
				
			||||||
 | 
						mat gen[6];
 | 
				
			||||||
 | 
						char buf[100], buf2[100], buf3[100];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// allocate stuff
 | 
				
			||||||
 | 
						ws = mat_workspace_init(3);
 | 
				
			||||||
 | 
						for(int i = 0; i < 6; i++)
 | 
				
			||||||
 | 
							mat_init(gen[i], 3);
 | 
				
			||||||
 | 
						mat_init(tmp, 3);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						initialize_triangle_generators(ws, gen, m, t);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						mat_identity(matrices[0]);
 | 
				
			||||||
 | 
						for(int i = 1; i < group->size; i++) {
 | 
				
			||||||
 | 
							if(group->elements[i].length % 2 != 0)
 | 
				
			||||||
 | 
								continue;
 | 
				
			||||||
 | 
							if(!group->elements[i].inverse)
 | 
				
			||||||
 | 
								continue;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							int parent = group->elements[i].parent->id;
 | 
				
			||||||
 | 
							int grandparent = group->elements[i].parent->parent->id;
 | 
				
			||||||
 | 
							int letter;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							if(group->elements[parent].letter == 1 && group->elements[i].letter == 2)
 | 
				
			||||||
 | 
								letter = 0; // p = bc
 | 
				
			||||||
 | 
							else if(group->elements[parent].letter == 2 && group->elements[i].letter == 0)
 | 
				
			||||||
 | 
								letter = 1; // q = ca
 | 
				
			||||||
 | 
							else if(group->elements[parent].letter == 0 && group->elements[i].letter == 1)
 | 
				
			||||||
 | 
								letter = 2; // r = ab
 | 
				
			||||||
 | 
							if(group->elements[parent].letter == 2 && group->elements[i].letter == 1)
 | 
				
			||||||
 | 
								letter = 3; // p^{-1} = cb
 | 
				
			||||||
 | 
							else if(group->elements[parent].letter == 0 && group->elements[i].letter == 2)
 | 
				
			||||||
 | 
								letter = 4; // q^{-1} = ac
 | 
				
			||||||
 | 
							else if(group->elements[parent].letter == 1 && group->elements[i].letter == 0)
 | 
				
			||||||
 | 
								letter = 5; // r^{-1} = ba
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							mat_multiply(ws, matrices[i], matrices[grandparent], gen[letter]);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// free stuff
 | 
				
			||||||
 | 
						for(int i = 0; i < 6; i++)
 | 
				
			||||||
 | 
							mat_clear(gen[i]);
 | 
				
			||||||
 | 
						mat_clear(tmp);
 | 
				
			||||||
 | 
						mat_workspace_clear(ws);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					int main(int argc, char *argv[])
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						mpq_t m, t, tmp;
 | 
				
			||||||
 | 
						double s;
 | 
				
			||||||
 | 
						mat_workspace *ws;
 | 
				
			||||||
 | 
						mat gen[6];
 | 
				
			||||||
 | 
						mps_context *solver;
 | 
				
			||||||
 | 
						mat element, inverse;
 | 
				
			||||||
 | 
						int letter1, letter2, letter;
 | 
				
			||||||
 | 
						mpq_t tr, trinv;
 | 
				
			||||||
 | 
						double x, y;
 | 
				
			||||||
 | 
						int retval;
 | 
				
			||||||
 | 
						double evs[3];
 | 
				
			||||||
 | 
						char buf[100];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						DEBUG("Allocate\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						mpq_inits(m, t, tmp, tr, trinv, NULL);
 | 
				
			||||||
 | 
						ws = mat_workspace_init(3);
 | 
				
			||||||
 | 
						for(int i = 0; i < 6; i++)
 | 
				
			||||||
 | 
							mat_init(gen[i], 3);
 | 
				
			||||||
 | 
						mat_init(element, 3);
 | 
				
			||||||
 | 
						mat_init(inverse, 3);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						solver = mps_context_new();
 | 
				
			||||||
 | 
						mps_context_set_output_prec(solver, 20); // relative precision
 | 
				
			||||||
 | 
						mps_context_set_output_goal(solver, MPS_OUTPUT_GOAL_APPROXIMATE);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for(int i = 1; i <= 99; i++) {
 | 
				
			||||||
 | 
							for(int j = 1; j <= 100; j++) {
 | 
				
			||||||
 | 
								mpq_set_ui(t, j, 100);
 | 
				
			||||||
 | 
								mpq_set_ui(m, i, 100); // 414/1000 ~ sqrt(2)-1 <-> s=1
 | 
				
			||||||
 | 
								s = (1-mpq_get_d(m)*mpq_get_d(m))/(2*mpq_get_d(m));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								DEBUG("Compute matrix\n");
 | 
				
			||||||
 | 
								initialize_triangle_generators(ws, gen, m, t);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								mat_identity(element);
 | 
				
			||||||
 | 
								mat_identity(inverse);
 | 
				
			||||||
 | 
								for(int i = 0; i < strlen(argv[1]); i+=2) {
 | 
				
			||||||
 | 
									letter1 = argv[1][i] - 'a';
 | 
				
			||||||
 | 
									letter2 = argv[1][i+1] - 'a';
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
									if(letter1 == 1 && letter2 == 2)
 | 
				
			||||||
 | 
										letter = 0; // p = bc
 | 
				
			||||||
 | 
									else if(letter1 == 2 && letter2 == 0)
 | 
				
			||||||
 | 
										letter = 1; // q = ca
 | 
				
			||||||
 | 
									else if(letter1 == 0 && letter2 == 1)
 | 
				
			||||||
 | 
										letter = 2; // r = ab
 | 
				
			||||||
 | 
									else if(letter1 == 2 && letter2 == 1)
 | 
				
			||||||
 | 
										letter = 3; // p^{-1} = cb
 | 
				
			||||||
 | 
									else if(letter1 == 0 && letter2 == 2)
 | 
				
			||||||
 | 
										letter = 4; // q^{-1} = ac
 | 
				
			||||||
 | 
									else if(letter1 == 1 && letter2 == 0)
 | 
				
			||||||
 | 
										letter = 5; // r^{-1} = ba
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
									mat_multiply(ws, element, element, gen[letter]);
 | 
				
			||||||
 | 
									mat_multiply(ws, inverse, gen[(letter+3)%6], inverse);
 | 
				
			||||||
 | 
								}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								DEBUG("Compute traces\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								mat_trace(tr, element);
 | 
				
			||||||
 | 
								mat_trace(trinv, inverse);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								DEBUG("Solve characteristic polynomials\n");
 | 
				
			||||||
 | 
								retval = solve_characteristic_polynomial(solver, tr, trinv, evs);
 | 
				
			||||||
 | 
								if(retval == 1) {
 | 
				
			||||||
 | 
									fprintf(stderr, "Error! Could not solve polynomial.\n");
 | 
				
			||||||
 | 
									return 1;
 | 
				
			||||||
 | 
								}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								if(fabs(evs[0]) < fabs(evs[1]))
 | 
				
			||||||
 | 
									SWAP(double, evs[0], evs[1]);
 | 
				
			||||||
 | 
								if(fabs(evs[1]) < fabs(evs[2]))
 | 
				
			||||||
 | 
									SWAP(double, evs[1], evs[2]);
 | 
				
			||||||
 | 
								if(fabs(evs[0]) < fabs(evs[1]))
 | 
				
			||||||
 | 
									SWAP(double, evs[0], evs[1]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								x = log(fabs(evs[0]));
 | 
				
			||||||
 | 
								y = -log(fabs(evs[2]));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//	gmp_printf("%Qd %Qd %f %f %f\n", tr, trinv, x, y, y/x);
 | 
				
			||||||
 | 
								gmp_printf("%.5f %.5f %.5f %.5f\n", mpq_get_d(t), mpq_get_d(m), s, y/x);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						DEBUG("Clean up\n");
 | 
				
			||||||
 | 
						mpq_clears(m, t, tmp, tr, trinv, NULL);
 | 
				
			||||||
 | 
						mat_workspace_clear(ws);
 | 
				
			||||||
 | 
						for(int i = 0; i < 6; i++)
 | 
				
			||||||
 | 
							mat_clear(gen[i]);
 | 
				
			||||||
 | 
						mat_clear(element);
 | 
				
			||||||
 | 
						mat_clear(inverse);
 | 
				
			||||||
 | 
						mps_context_free(solver);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
		Reference in New Issue
	
	Block a user