2020-08-02 22:48:33 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <malloc.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "coxeter.h"
|
|
|
|
|
|
|
|
#define LOOP(i,n) for(int i = 0; i < (n); i++)
|
|
|
|
|
|
|
|
group_t *coxeter_init_triangle(int p, int q, int r, int nmax)
|
|
|
|
{
|
|
|
|
int coxeter_matrix[9] = {
|
2021-10-23 21:04:12 +00:00
|
|
|
1, r, q,
|
|
|
|
r, 1, p,
|
|
|
|
q, p, 1};
|
2020-08-02 22:48:33 +00:00
|
|
|
|
|
|
|
return coxeter_init(3, coxeter_matrix, nmax);
|
|
|
|
}
|
|
|
|
|
|
|
|
group_t *coxeter_init(int rank, int *coxeter_matrix, int nmax)
|
|
|
|
{
|
|
|
|
int n;
|
|
|
|
group_t *group;
|
|
|
|
double *schlaefli_matrix;
|
|
|
|
double *vectors;
|
|
|
|
double *cur_vec;
|
|
|
|
groupelement_t *cur, *cur_inv;
|
|
|
|
int word[100]; // reasonable estimate?
|
|
|
|
|
|
|
|
// allocate
|
|
|
|
group = malloc(sizeof(group_t));
|
|
|
|
group->coxeter_matrix = malloc(rank*rank*sizeof(int));
|
|
|
|
schlaefli_matrix = malloc(rank*rank*sizeof(double));
|
|
|
|
vectors = malloc(rank*nmax*sizeof(double));
|
|
|
|
cur_vec = malloc(rank*sizeof(double));
|
|
|
|
group->elements = malloc(nmax*sizeof(groupelement_t));
|
|
|
|
group->lists = malloc(2*nmax*rank*sizeof(groupelement_t*));
|
|
|
|
memset(group->lists, 0, 2*nmax*rank*sizeof(groupelement_t*));
|
|
|
|
LOOP(i, nmax) group->elements[i].left = group->lists + i*rank;
|
|
|
|
LOOP(i, nmax) group->elements[i].right = group->lists + (nmax+i)*rank;
|
|
|
|
LOOP(i, nmax) group->elements[i].letter = -1;
|
|
|
|
LOOP(i, nmax) group->elements[i].id = i;
|
|
|
|
|
|
|
|
// copy coxeter matrix
|
|
|
|
group->rank = rank;
|
|
|
|
memcpy(group->coxeter_matrix, coxeter_matrix, rank*rank*sizeof(int));
|
|
|
|
|
|
|
|
// generate Schläfli matrix
|
|
|
|
LOOP(i,rank) LOOP(j,rank) {
|
|
|
|
if(group->coxeter_matrix[i*rank+j] == -1)
|
|
|
|
schlaefli_matrix[i*rank+j] = -2;
|
|
|
|
else
|
|
|
|
schlaefli_matrix[i*rank+j] = -2*cos(M_PI/group->coxeter_matrix[i*rank+j]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// identity element
|
|
|
|
group->elements[0].length = 0;
|
|
|
|
group->elements[0].letter = -1;
|
|
|
|
LOOP(i, rank) vectors[i] = 1.0;
|
|
|
|
n = 1;
|
|
|
|
|
|
|
|
// elements and left multiplication
|
|
|
|
for(int i = 0; n < nmax && i < n; i++) {
|
|
|
|
LOOP(j, rank) {
|
|
|
|
if(n >= nmax)
|
|
|
|
break;
|
|
|
|
if(vectors[i*rank+j] < 0) // this generator decreases length
|
|
|
|
continue;
|
|
|
|
if(group->elements[i].left[j] != 0) // we already added this element
|
|
|
|
continue;
|
|
|
|
|
|
|
|
LOOP(k, rank) {
|
|
|
|
if(k == j)
|
|
|
|
vectors[n*rank+k] = -vectors[i*rank+k];
|
|
|
|
else
|
|
|
|
vectors[n*rank+k] = vectors[i*rank+k] - vectors[i*rank+j]*schlaefli_matrix[k*rank+j];
|
|
|
|
}
|
|
|
|
|
|
|
|
group->elements[n].length = group->elements[i].length + 1;
|
|
|
|
|
|
|
|
// if s_k * w is shorter than w (the new element), find out what it is and update "left"
|
|
|
|
LOOP(k, rank) {
|
|
|
|
if(vectors[n*rank+k] > 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if(group->elements[n].letter == -1)
|
|
|
|
group->elements[n].letter = k;
|
|
|
|
|
|
|
|
// get w
|
|
|
|
LOOP(l, rank) cur_vec[l] = vectors[n*rank+l];
|
|
|
|
|
|
|
|
// apply s_k
|
|
|
|
LOOP(l, rank)
|
|
|
|
if(l != k)
|
|
|
|
cur_vec[l] -= cur_vec[k]*schlaefli_matrix[l*rank+k];
|
|
|
|
cur_vec[k] = -cur_vec[k];
|
|
|
|
|
|
|
|
// find a reduced word for s_k w
|
|
|
|
LOOP(m, group->elements[i].length) { // s_k w should have same length as element i
|
|
|
|
int p;
|
|
|
|
|
|
|
|
// find a generator s_p decreasing the word length
|
|
|
|
for(p = 0; p < rank; p++)
|
|
|
|
if(cur_vec[p] < 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if(p == rank) // this should not happen
|
|
|
|
fprintf(stderr, "Uh oh!\n");
|
|
|
|
|
|
|
|
word[m] = p;
|
|
|
|
|
|
|
|
// apply s_p
|
|
|
|
LOOP(l, rank)
|
|
|
|
if(l != p)
|
|
|
|
cur_vec[l] -= cur_vec[p]*schlaefli_matrix[l*rank+p];
|
|
|
|
cur_vec[p] = -cur_vec[p];
|
|
|
|
}
|
|
|
|
|
|
|
|
// find the element corresponding to the word
|
|
|
|
groupelement_t *cur = &group->elements[0];
|
|
|
|
LOOP(m, group->elements[i].length) {
|
|
|
|
cur = cur->left[word[group->elements[i].length - 1 - m]];
|
|
|
|
}
|
|
|
|
|
|
|
|
cur->left[k] = &group->elements[n];
|
|
|
|
group->elements[n].left[k] = cur;
|
|
|
|
}
|
|
|
|
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
group->size = n;
|
|
|
|
|
|
|
|
// parent
|
|
|
|
LOOP(i, n) {
|
|
|
|
if(i == 0)
|
|
|
|
group->elements[i].parent = NULL;
|
|
|
|
else
|
|
|
|
group->elements[i].parent = group->elements[i].left[group->elements[i].letter];
|
|
|
|
}
|
|
|
|
|
|
|
|
// right multiplication
|
|
|
|
LOOP(i, n) {
|
|
|
|
LOOP(j, rank) {
|
|
|
|
if(group->elements[i].right[j])
|
|
|
|
continue;
|
|
|
|
|
|
|
|
int k = 0;
|
|
|
|
for(groupelement_t *cur = &group->elements[i]; cur->parent; cur = cur->parent)
|
|
|
|
word[k++] = cur->letter;
|
|
|
|
cur = group->elements[0].left[j];
|
|
|
|
for(int k = group->elements[i].length - 1; k >= 0; k--)
|
|
|
|
if(cur)
|
|
|
|
cur = cur->left[word[k]];
|
|
|
|
|
|
|
|
if(cur) {
|
|
|
|
group->elements[i].right[j] = cur;
|
|
|
|
cur->right[j] = &group->elements[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// inverse
|
|
|
|
LOOP(i, n) {
|
|
|
|
cur_inv = &group->elements[0];
|
|
|
|
for(groupelement_t *cur = &group->elements[i]; cur->parent; cur = cur->parent) {
|
|
|
|
if(cur_inv == NULL)
|
|
|
|
break;
|
|
|
|
cur_inv = cur_inv->left[cur->letter];
|
|
|
|
}
|
|
|
|
group->elements[i].inverse = cur_inv;
|
|
|
|
}
|
|
|
|
|
|
|
|
// free
|
|
|
|
free(schlaefli_matrix);
|
|
|
|
free(vectors);
|
|
|
|
|
|
|
|
return group;
|
|
|
|
}
|
|
|
|
|
|
|
|
void coxeter_clear(group_t *g)
|
|
|
|
{
|
|
|
|
free(g->coxeter_matrix);
|
|
|
|
free(g->elements);
|
|
|
|
free(g->lists);
|
|
|
|
free(g);
|
|
|
|
}
|