#include #include #include #include #include #include #include "main.h" #include "initcairo.h" #include "triangle.h" #include "linalg.h" #define TOGGLE(a) do { (a) = !(a); } while(0) DrawingContext *screen_context; // setup everything except cairo and dim, which will be provided by the graphics system void setupContext(DrawingContext *ctx, int argc, char *argv[]) { ctx->n_group_elements = NUM_GROUP_ELEMENTS; ctx->n_group_elements_combinatorial = NUM_GROUP_ELEMENTS_COMBINATORIAL; ctx->p[0] = atoi(argv[1]); ctx->p[1] = atoi(argv[2]); ctx->p[2] = atoi(argv[3]); ctx->k[0] = atoi(argv[4]); ctx->k[1] = atoi(argv[5]); ctx->k[2] = atoi(argv[6]); if(argc > 7) ctx->parameter = atof(argv[7]); else ctx->parameter = 1.0; if(argc > 8) ctx->parameter2 = atof(argv[8]); else ctx->parameter2 = 1.0; // ctx->parameter = 2.77; // ctx->parameter = 0.1; ctx->show_boxes = 0; ctx->show_boxes2 = 0; ctx->show_attractors = 0; ctx->show_reflectors = 0; ctx->show_rotated_reflectors = 0; ctx->show_limit = 0; ctx->show_dual_limit = 0; ctx->show_text = 1; ctx->mode = 0; ctx->use_rotation_basis = 2; ctx->limit_with_lines = 0; ctx->use_repelling = 0; ctx->show_marking = 1; ctx->marking.x = -0.73679; ctx->marking.y = -0.01873; ctx->show_coxeter_orbit = 0; ctx->limit_curve = malloc(3*ctx->n_group_elements*sizeof(double)); ctx->limit_curve_count = -1; ctx->group = malloc(ctx->n_group_elements_combinatorial*sizeof(groupelement_t)); generate_triangle_group(ctx->group, ctx->n_group_elements_combinatorial, ctx->p[0], ctx->p[1], ctx->p[2]); // the temporary stuff ctx->cartan = gsl_matrix_alloc(3, 3); ctx->cob = gsl_matrix_alloc(3, 3); ctx->ws = workspace_alloc(3); } void destroyContext(DrawingContext *ctx) { free(ctx->limit_curve); free(ctx->group); gsl_matrix_free(ctx->cartan); gsl_matrix_free(ctx->cob); workspace_free(ctx->ws); } void computeMatrix(DrawingContext *ctx, gsl_matrix *result, const char *type) { gsl_matrix **gen = getTempMatrices(ctx->ws, 6); // ERROR(strlen(type) != 2, "Invalid call of computeRotationMatrix()\n"); initializeTriangleGeneratorsCurrent(gen, ctx); gsl_matrix_set_identity(result); for(int i = 0; i < strlen(type); i++) { if(type[i] >= 'a' && type[i] <= 'c') multiply_right(result, gen[type[i]-'a'], ctx->ws); else if(type[i] >= 'A' && type[i] <= 'C') multiply_right(result, gen[type[i]-'A'+3], ctx->ws); } releaseTempMatrices(ctx->ws, 6); } void computeRotationMatrixFrame(DrawingContext *ctx, gsl_matrix *result, const char *type) { gsl_matrix *tmp = getTempMatrix(ctx->ws); computeMatrix(ctx, tmp, type); rotation_frame(tmp, result, ctx->ws); releaseTempMatrices(ctx->ws, 1); } void computeBoxTransform(DrawingContext *ctx, char *word1, char *word2, gsl_matrix *result) { vector_t p[2][3],i[2]; vector_t std[4] = { {-1, -1, 1}, {-1, 1, 1}, {1, 1, 1}, {1, -1, 1} }; gsl_vector **vertices = getTempVectors(ctx->ws, 4); gsl_vector **std_vertices = getTempVectors(ctx->ws, 4); gsl_matrix *tmp = getTempMatrix(ctx->ws); gsl_matrix *to_frame = getTempMatrix(ctx->ws); gsl_matrix *to_std_frame = getTempMatrix(ctx->ws); fixedPoints(ctx, word1, p[0]); fixedPoints(ctx, word2, p[1]); // intersect attracting line with neutral line of the other element for(int j = 0; j < 2; j++) i[j] = cross(cross(p[j%2][0],p[j%2][1]),cross(p[(j+1)%2][0],p[(j+1)%2][2])); // box consists of p[0][0], i[0], p[1][0], i[1] for(int i = 0; i < 4; i++) vectorToGsl(std[i], std_vertices[i]); vectorToGsl(p[0][0], vertices[0]); vectorToGsl(i[0], vertices[1]); vectorToGsl(p[1][0], vertices[2]); vectorToGsl(i[1], vertices[3]); projective_frame(std_vertices, to_std_frame, ctx->ws); projective_frame(vertices, to_frame, ctx->ws); invert(to_frame, tmp, ctx->ws); multiply(to_std_frame, tmp, result); /* LOOP(i) { LOOP(j) { printf("%.4f ", gsl_matrix_get(result, i, j)); } printf("\n"); }*/ releaseTempVectors(ctx->ws, 8); releaseTempMatrices(ctx->ws, 3); } void updateMatrices(DrawingContext *ctx) { double angle[3]; LOOP(i) angle[i] = M_PI*ctx->k[i]/ctx->p[i]; cartanMatrix(ctx->cartan, angle[0], angle[1], angle[2], ctx->parameter); gsl_matrix *tmp = getTempMatrix(ctx->ws); if(ctx->use_rotation_basis % 5 == 0) { gsl_matrix_set(tmp, 0, 0, 0.0); gsl_matrix_set(tmp, 0, 1, sqrt(3.0)/2.0); gsl_matrix_set(tmp, 0, 2, -sqrt(3.0)/2.0); gsl_matrix_set(tmp, 1, 0, 1.0); gsl_matrix_set(tmp, 1, 1, -0.5); gsl_matrix_set(tmp, 1, 2, -0.5); gsl_matrix_set(tmp, 2, 0, 1.0); gsl_matrix_set(tmp, 2, 1, 1.0); gsl_matrix_set(tmp, 2, 2, 1.0); gsl_matrix_memcpy(ctx->cob, tmp); } else if(ctx->use_rotation_basis % 5 == 1) { gsl_matrix_memcpy(ctx->cob, ctx->cartan); // is this a good choice of basis for any reason? } else if(ctx->use_rotation_basis % 5 == 2) { computeRotationMatrixFrame(ctx, tmp, "C"); invert(tmp, ctx->cob, ctx->ws); } else if(ctx->use_rotation_basis % 5 == 3) { computeBoxTransform(ctx, "acb", "cba", ctx->cob); // computeBoxTransform(ctx, "cab", "bca", ctx->cob); // computeBoxTransform(ctx, "acb", "cba", ctx->cob); } else { cartanMatrix(tmp, M_PI/ctx->p[0], M_PI/ctx->p[1], M_PI/ctx->p[2], 1.0); diagonalize_symmetric_form(tmp, ctx->cob, ctx->ws); } releaseTempMatrices(ctx->ws, 1); } void output_info(DrawingContext *ctx) { vector_t p[4][3]; point_t pt; fixedPoints(ctx, "abc", p[0]); fixedPoints(ctx, "bca", p[1]); fixedPoints(ctx, "cab", p[2]); pt = vectorToPoint(ctx, p[0][0]); printf("(abc)-+ = (%f %f)\n", pt.x, pt.y); pt = vectorToPoint(ctx, p[1][0]); printf("(bca)-+ = (%f %f)\n", pt.x, pt.y); } void print(DrawingContext *screen) { DrawingContext file; DimensionsInfo dim; cairo_surface_t *surface; char filename[100]; time_t t = time(NULL); strftime(filename, sizeof(filename), "screenshot_%Y%m%d_%H%M%S.pdf", localtime(&t)); memcpy(&file, screen, sizeof(file)); dim.width = screen->dim->width; dim.height = screen->dim->width / sqrt(2.0); dim.matrix = screen->dim->matrix; dim.matrix.y0 += ((double)dim.height - (double)screen->dim->height) / 2.0; // recenter vertically updateDimensions(&dim); file.dim = &dim; surface = cairo_pdf_surface_create(filename, (double)dim.width, (double)dim.height); file.cairo = cairo_create(surface); draw(&file); cairo_destroy(file.cairo); cairo_surface_destroy(surface); printf("Wrote sceenshot to file: %s\n", filename); } int processEvent(GraphicsInfo *info, XEvent *ev) { int state; unsigned long key; char filename[100]; // fprintf(stderr, "Event: %d\n", ev->type); switch(ev->type) { case ButtonPress: state = ev->xbutton.state & (ShiftMask | LockMask | ControlMask); if(ev->xbutton.button == 1 && state & ShiftMask) { screen_context->marking.x = (double)ev->xbutton.x; screen_context->marking.y = (double)ev->xbutton.y; printf("mouse button pressed: %f, %f\n", screen_context->marking.x, screen_context->marking.y); cairo_set_matrix(screen_context->cairo, &screen_context->dim->matrix); cairo_device_to_user(screen_context->cairo, &screen_context->marking.x, &screen_context->marking.y); printf("mouse button pressed transformed: %f, %f\n", screen_context->marking.x, screen_context->marking.y); return STATUS_REDRAW; } break; case KeyPress: state = ev->xkey.state & (ShiftMask | LockMask | ControlMask); key = XkbKeycodeToKeysym(ev->xkey.display, ev->xkey.keycode, 0, !!(state & ShiftMask)); printf("Key pressed: %ld\n", key); switch(key) { case XK_Down: screen_context->parameter /= exp(0.002); updateMatrices(screen_context); computeLimitCurve(screen_context); break; case XK_Up: screen_context->parameter *= exp(0.002); updateMatrices(screen_context); computeLimitCurve(screen_context); break; case XK_Left: screen_context->parameter2 /= exp(0.002); updateMatrices(screen_context); computeLimitCurve(screen_context); break; case XK_Right: screen_context->parameter2 *= exp(0.002); updateMatrices(screen_context); computeLimitCurve(screen_context); break; case XK_Page_Down: screen_context->parameter /= exp(0.02); updateMatrices(screen_context); computeLimitCurve(screen_context); break; case XK_Page_Up: screen_context->parameter *= exp(0.02); updateMatrices(screen_context); computeLimitCurve(screen_context); break; case ' ': screen_context->parameter = 5.57959706; updateMatrices(screen_context); computeLimitCurve(screen_context); break; case XK_Return: // screen_context->parameter = 2.76375163; screen_context->parameter = 5.29063366; updateMatrices(screen_context); computeLimitCurve(screen_context); break; case 'm': printf("matrix.xx = %f;\n", info->dim->matrix.xx); printf("matrix.xy = %f;\n", info->dim->matrix.xy); printf("matrix.x0 = %f;\n", info->dim->matrix.x0); printf("matrix.yx = %f;\n", info->dim->matrix.yx); printf("matrix.yy = %f;\n", info->dim->matrix.yy); printf("matrix.y0 = %f;\n", info->dim->matrix.y0); break; case 'i': output_info(screen_context); break; case 'b': TOGGLE(screen_context->show_boxes); break; case 'B': TOGGLE(screen_context->show_boxes2); break; case 'a': TOGGLE(screen_context->show_attractors); break; case 'r': TOGGLE(screen_context->show_reflectors); break; case 'x': TOGGLE(screen_context->show_rotated_reflectors); break; case 'L': TOGGLE(screen_context->limit_with_lines); break; case 'l': TOGGLE(screen_context->show_limit); break; case 'd': TOGGLE(screen_context->show_dual_limit); break; case 'R': screen_context->use_rotation_basis++; updateMatrices(screen_context); computeLimitCurve(screen_context); break; case 'p': print(screen_context); break; case 'M': /* screen_context->limit_with_lines = 0; double parameter_start = screen_context->parameter; for(int i = 0; i <= 1300; i++) { if(i < 400) screen_context->parameter = exp(log(parameter_start)+0.002*i); else if(i < 500) screen_context->parameter = exp(log(parameter_start)+0.002*400); else screen_context->parameter = exp(log(parameter_start)+0.002*(900-i)); updateMatrices(screen_context); computeLimitCurve(screen_context); draw(screen_context); sprintf(filename, "movie3/test%03d.png", i); cairo_surface_write_to_png(info->buffer_surface, filename); printf("Finished drawing %s\n", filename); } */ screen_context->limit_with_lines = 0; double parameter_start = screen_context->parameter; for(int i = 0; i <= 1300; i++) { if(i < 400) screen_context->parameter = exp(0.003*i); else if(i < 500) screen_context->parameter = exp(0.003*400); else screen_context->parameter = exp(0.003*(900-i)); updateMatrices(screen_context); computeLimitCurve(screen_context); draw(screen_context); sprintf(filename, "movie5/test%03d.png", i); cairo_surface_write_to_png(info->buffer_surface, filename); printf("Finished drawing %s\n", filename); } case 'f': TOGGLE(screen_context->use_repelling); computeLimitCurve(screen_context); break; case 't': TOGGLE(screen_context->show_text); break; case 'c': TOGGLE(screen_context->show_coxeter_orbit); break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '0': screen_context->mode = key - '0'; break; } return STATUS_REDRAW; } return STATUS_NOTHING; } int main(int argc, char *argv[]) { GraphicsInfo *info; screen_context = malloc(sizeof(DrawingContext)); setupContext(screen_context, argc, argv); updateMatrices(screen_context); computeLimitCurve(screen_context); info = initCairo(0, KeyPressMask, 200, 200, "Triangle group"); if(!info) return 1; /* info->dim->matrix.xx = 274.573171; info->dim->matrix.xy = 0.000000; info->dim->matrix.x0 = 583.073462; info->dim->matrix.yx = 0.000000; info->dim->matrix.yy = 274.573171; info->dim->matrix.y0 = 777.225293; */ info->dim->matrix.xx = 274.573171; info->dim->matrix.xy = 0.000000; info->dim->matrix.x0 = 910.073462; info->dim->matrix.yx = 0.000000; info->dim->matrix.yy = 274.573171; info->dim->matrix.y0 = 509.225293; updateDimensions(info->dim); screen_context->dim = info->dim; screen_context->cairo = info->buffer_context; startTimer(info); while(1) { int result = checkEvents(info, processEvent, NULL); if(result == STATUS_QUIT) return 0; else if(result == STATUS_REDRAW) { struct timeval current_time; double start_time, intermediate_time, end_time; gettimeofday(¤t_time, 0); start_time = current_time.tv_sec + current_time.tv_usec*1e-6; draw(screen_context); gettimeofday(¤t_time, 0); intermediate_time = current_time.tv_sec + current_time.tv_usec*1e-6; cairo_set_source_surface(info->front_context, info->buffer_surface, 0, 0); cairo_paint(info->front_context); gettimeofday(¤t_time, 0); end_time = current_time.tv_sec + current_time.tv_usec*1e-6; printf("drawing finished in %.2f milliseconds, of which %.2f milliseconds were buffer switching\n", (end_time - start_time) * 1000, (end_time - intermediate_time) * 1000); } waitUpdateTimer(info); } free(screen_context); destroyCairo(info); destroyContext(screen_context); return 0; }