#include #include #include #include #include #include #include #include #include #include "linalg.h" #define ERROR(condition, msg, ...) if(condition){fprintf(stderr, msg, ##__VA_ARGS__); exit(1);} #define FCMP(x, y) gsl_fcmp(x, y, 1e-10) /*********************************************** temporary storage ********************************************************/ workspace_t *workspace_alloc(int n) { workspace_t *result = (workspace_t*)malloc(sizeof(workspace_t)); result->n = n; result->work_nonsymmv = gsl_eigen_nonsymmv_alloc(n); result->work_symmv = gsl_eigen_symmv_alloc(n); result->work_sv = gsl_vector_alloc(n); result->eval_complex = gsl_vector_complex_alloc(n); result->evec_complex = gsl_matrix_complex_alloc(n, n); result->eval_real = gsl_vector_alloc(n); result->evec_real = gsl_matrix_alloc(n, n); result->permutation = gsl_permutation_alloc(n); result->tmp_mat = malloc(MAX_TEMP_MATRICES*sizeof(gsl_matrix*)); for(int i = 0; i < MAX_TEMP_MATRICES; i++) result->tmp_mat[i] = gsl_matrix_alloc(3, 3); result->tmp_mat_used = 0; result->tmp_vec = malloc(MAX_TEMP_MATRICES*sizeof(gsl_vector*)); for(int i = 0; i < MAX_TEMP_MATRICES; i++) result->tmp_vec[i] = gsl_vector_alloc(3); result->tmp_vec_used = 0; return result; } void workspace_free(workspace_t *workspace) { gsl_eigen_nonsymmv_free(workspace->work_nonsymmv); gsl_eigen_symmv_free(workspace->work_symmv); gsl_vector_free(workspace->work_sv); gsl_vector_complex_free(workspace->eval_complex); gsl_matrix_complex_free(workspace->evec_complex); gsl_vector_free(workspace->eval_real); gsl_matrix_free(workspace->evec_real); gsl_permutation_free(workspace->permutation); for(int i = 0; i < MAX_TEMP_MATRICES; i++) gsl_matrix_free(workspace->tmp_mat[i]); free(workspace->tmp_mat); for(int i = 0; i < MAX_TEMP_VECTORS; i++) gsl_vector_free(workspace->tmp_vec[i]); free(workspace->tmp_vec); } /************************************************** basic operations ********************************************************/ void invert(gsl_matrix *in, gsl_matrix *out, workspace_t *ws) { int s; gsl_matrix *tmp = getTempMatrix(ws); gsl_matrix_memcpy(tmp, in); gsl_linalg_LU_decomp(tmp, ws->permutation, &s); gsl_linalg_LU_invert(tmp, ws->permutation, out); releaseTempMatrices(ws, 1); } void solve(gsl_matrix *A, gsl_vector *b, gsl_vector *result, workspace_t *ws) { int s; gsl_matrix *tmp = getTempMatrix(ws); gsl_matrix_memcpy(tmp, A); gsl_linalg_LU_decomp(tmp, ws->permutation, &s); gsl_linalg_LU_solve(tmp, ws->permutation, b, result); releaseTempMatrices(ws, 1); } void conjugate(gsl_matrix *in, gsl_matrix *conjugator, gsl_matrix *out, workspace_t *ws) { gsl_matrix *tmp = getTempMatrix(ws); invert(conjugator, out, ws); // use out to temporarily store inverse conjugator gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, in, out, 0.0, tmp); // in * conjugator^{-1} gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, conjugator, tmp, 0.0, out); releaseTempMatrices(ws, 1); } void multiply(gsl_matrix *a, gsl_matrix *b, gsl_matrix *out) { gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, a, b, 0.0, out); } void multiply_right(gsl_matrix *a, gsl_matrix *b, workspace_t *ws) { gsl_matrix *tmp = getTempMatrix(ws); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, a, b, 0.0, tmp); gsl_matrix_memcpy(a, tmp); releaseTempMatrices(ws, 1); } void multiply_left(gsl_matrix *a, gsl_matrix *b, workspace_t *ws) { gsl_matrix *tmp = getTempMatrix(ws); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, a, b, 0.0, tmp); gsl_matrix_memcpy(b, tmp); releaseTempMatrices(ws, 1); } void multiply_many(workspace_t *ws, gsl_matrix *out, int n, ...) { va_list args; va_start(args, n); gsl_matrix_set_identity(out); for(int i = 0; i < n; i++) { gsl_matrix *cur = va_arg(args, gsl_matrix *); multiply_right(out, cur, ws); } va_end(args); } void cartan_calc(gsl_matrix *g, double *mu, workspace_t *ws) { gsl_matrix *tmp = getTempMatrix(ws); gsl_matrix_memcpy(tmp, g); gsl_linalg_SV_decomp(tmp, ws->evec_real, ws->eval_real, ws->work_sv); for(int i = 0; i < ws->n - 1; i++) mu[i] = log(gsl_vector_get(ws->eval_real, i) / gsl_vector_get(ws->eval_real, i+1)); releaseTempMatrices(ws, 1); } void initialize(gsl_matrix *g, double *data, int x, int y) { gsl_matrix_view view = gsl_matrix_view_array(data, x, y); gsl_matrix_memcpy(g, &view.matrix); } void rotation_matrix(gsl_matrix *g, double *vector) { double normalized[3]; double norm = sqrt(vector[0]*vector[0] + vector[1]*vector[1] + vector[2]*vector[2]); for(int i = 0; i < 3; i++) normalized[i] = vector[i] / norm; gsl_matrix_set_identity(g); gsl_matrix_set(g, 0, 0, cos(norm)); gsl_matrix_set(g, 0, 1, -sin(norm) * normalized[2]); gsl_matrix_set(g, 0, 2, +sin(norm) * normalized[1]); gsl_matrix_set(g, 1, 0, +sin(norm) * normalized[2]); gsl_matrix_set(g, 1, 1, cos(norm)); gsl_matrix_set(g, 1, 2, -sin(norm) * normalized[0]); gsl_matrix_set(g, 2, 0, -sin(norm) * normalized[1]); gsl_matrix_set(g, 2, 1, +sin(norm) * normalized[0]); gsl_matrix_set(g, 2, 2, cos(norm)); for(int i = 0; i < 3; i++) for(int j = 0; j < 3; j++) g->data[i * g->tda + j] += (1 - cos(norm)) * normalized[i] * normalized[j]; } double trace(gsl_matrix *g) { return gsl_matrix_get(g, 0, 0) + gsl_matrix_get(g, 1, 1) + gsl_matrix_get(g, 2, 2); } double determinant(gsl_matrix *g, workspace_t *ws) { int s; double result; gsl_matrix *tmp = getTempMatrix(ws); gsl_matrix_memcpy(tmp, g); gsl_linalg_LU_decomp(tmp, ws->permutation, &s); result = gsl_linalg_LU_det(tmp, s); releaseTempMatrices(ws, 1); return result; } int jordan_calc(gsl_matrix *g, double *mu, workspace_t *ws) { gsl_eigen_nonsymmv_params(1, ws->work_nonsymmv); gsl_eigen_nonsymmv(g, ws->eval_complex, ws->evec_complex, ws->work_nonsymmv); gsl_eigen_nonsymmv_sort(ws->eval_complex, ws->evec_complex, GSL_EIGEN_SORT_ABS_DESC); int real = 1; for(int i = 0; i < 4; i++) if(FCMP(GSL_IMAG(gsl_vector_complex_get(ws->eval_complex, i)), 0) != 0) real = 0; if(!real) return 0; // non-real eigenvalues! for(int i = 0; i < ws->n - 1; i++) { mu[i] = log(GSL_REAL(gsl_vector_complex_get(ws->eval_complex, i)) / GSL_REAL(gsl_vector_complex_get(ws->eval_complex, i+1))); } return 1; } int eigenvectors(gsl_matrix *g, gsl_matrix *evec_real, workspace_t *ws) { gsl_matrix *g_ = getTempMatrix(ws); int success = 0; gsl_matrix_memcpy(g_, g); gsl_eigen_nonsymmv_params(0, ws->work_nonsymmv); int r = gsl_eigen_nonsymmv(g_, ws->eval_complex, ws->evec_complex, ws->work_nonsymmv); ERROR(r, "gsl_eigen_nonsymmv failed!\n"); gsl_eigen_nonsymmv_sort(ws->eval_complex, ws->evec_complex, GSL_EIGEN_SORT_ABS_DESC); int real = 1; for(int i = 0; i < ws->n; i++) if(FCMP(GSL_IMAG(gsl_vector_complex_get(ws->eval_complex, i)), 0) != 0) real = 0; if(!real) goto eigenvectors_out; for(int i = 0; i < ws->n; i++) for(int j = 0; j < ws->n; j++) gsl_matrix_set(evec_real, i, j, GSL_REAL(gsl_matrix_complex_get(ws->evec_complex, i, j))); success = 1; eigenvectors_out: releaseTempMatrices(ws, 1); return success; } // only fills in the real eigenvectors and returns their count int real_eigenvectors(gsl_matrix *g, gsl_matrix *evec_real, workspace_t *ws) { gsl_matrix *g_ = getTempMatrix(ws); gsl_matrix_memcpy(g_, g); gsl_eigen_nonsymmv_params(0, ws->work_nonsymmv); int r = gsl_eigen_nonsymmv(g_, ws->eval_complex, ws->evec_complex, ws->work_nonsymmv); ERROR(r, "gsl_eigen_nonsymmv failed!\n"); gsl_eigen_nonsymmv_sort(ws->eval_complex, ws->evec_complex, GSL_EIGEN_SORT_ABS_DESC); int real = 0; for(int i = 0; i < ws->n; i++) { if(FCMP(GSL_IMAG(gsl_vector_complex_get(ws->eval_complex, i)), 0) == 0) {// real for(int j = 0; j < ws->n; j++) gsl_matrix_set(evec_real, j, real, GSL_REAL(gsl_matrix_complex_get(ws->evec_complex, j, i))); real++; } } releaseTempMatrices(ws, 1); return real; } void eigensystem_symm(gsl_matrix *g, gsl_vector *eval, gsl_matrix *evec, workspace_t *ws) { gsl_matrix *g_ = getTempMatrix(ws); gsl_matrix_memcpy(g_, g); int r = gsl_eigen_symmv (g_, eval, evec, ws->work_symmv); ERROR(r, "gsl_eigen_symmv failed!\n"); gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC); releaseTempMatrices(ws, 1); } // returns number of positive directions and matrix transforming TO diagonal basis int diagonalize_symmetric_form(gsl_matrix *A, gsl_matrix *cob, workspace_t *ws) { gsl_matrix *A_ = getTempMatrix(ws); gsl_matrix_memcpy(A_, A); int r = gsl_eigen_symmv (A_, ws->eval_real, cob, ws->work_symmv); ERROR(r, "gsl_eigen_symmv failed!\n"); gsl_eigen_symmv_sort(ws->eval_real, cob, GSL_EIGEN_SORT_VAL_ASC); gsl_matrix_transpose(cob); int positive = 0; for(int i = 0; i < ws->n; i++) { if(gsl_vector_get(ws->eval_real, i) > 0) positive++; for(int j = 0; j < ws->n; j++) *gsl_matrix_ptr(cob, i, j) *= sqrt(fabs(gsl_vector_get(ws->eval_real, i))); } releaseTempMatrices(ws, 1); return positive; } // computes a matrix in SL(3, R) which projectively transforms (e1, e2, e3, e1+e2+e3) to the 4 given vectors void projective_frame(gsl_vector **vertices, gsl_matrix *result, workspace_t *ws) { gsl_matrix *tmp = getTempMatrix(ws); gsl_vector *coeff = getTempVector(ws); int s; double det, scale; for(int i = 0; i < 3; i++) for(int j = 0; j < 3; j++) gsl_matrix_set(tmp, i, j, gsl_vector_get(vertices[j], i)); gsl_linalg_LU_decomp(tmp, ws->permutation, &s); gsl_linalg_LU_solve(tmp, ws->permutation, vertices[3], coeff); det = gsl_linalg_LU_det(tmp, s); for(int i = 0; i < 3; i++) det *= gsl_vector_get(coeff, i); scale = 1/cbrt(det); for(int i = 0; i < 3; i++) for(int j = 0; j < 3; j++) gsl_matrix_set(result, i, j, scale*gsl_vector_get(vertices[j], i)*gsl_vector_get(coeff, j)); releaseTempMatrices(ws, 1); releaseTempVectors(ws, 1); } void rotation_frame(gsl_matrix *rotation, gsl_matrix *result, workspace_t *ws) { gsl_matrix *tmp = getTempMatrix(ws); gsl_matrix *rot_basis = getTempMatrix(ws); gsl_matrix_memcpy(tmp, rotation); gsl_eigen_nonsymmv_params(0, ws->work_nonsymmv); int r = gsl_eigen_nonsymmv(tmp, ws->eval_complex, ws->evec_complex, ws->work_nonsymmv); ERROR(r, "gsl_eigen_nonsymmv failed!\n"); double arg, minarg = 5; // greater than pi int minidx; for(int i = 0; i < 3; i++) { arg = gsl_complex_arg(gsl_vector_complex_get(ws->eval_complex, i)); if(abs(arg) < minarg) { minidx = i; minarg = abs(arg); } } ERROR(FCMP(minarg, 0.0) != 0, "rotation_frame() failed! No eigenvalue was 1.\n"); for(int i = 0; i < 3; i++) { gsl_complex x = gsl_matrix_complex_get(ws->evec_complex, i, (minidx+1)%3); gsl_complex y = gsl_matrix_complex_get(ws->evec_complex, i, (minidx+2)%3); gsl_complex z = gsl_matrix_complex_get(ws->evec_complex, i, minidx); gsl_matrix_set(result, i, 0, GSL_REAL(x)+GSL_REAL(y)); gsl_matrix_set(result, i, 1, GSL_IMAG(x)-GSL_IMAG(y)); gsl_matrix_set(result, i, 2, GSL_REAL(z)); } releaseTempMatrices(ws, 2); }