#include "main.h" static int compareAngle(const void *x, const void *y) { return ((double*)x)[2] > ((double*)y)[2] ? 1 : -1; } // might need a rewrite void cartanMatrix(gsl_matrix *cartan, double a1, double a2, double a3, double s) { gsl_matrix_set(cartan, 0, 0, 2); gsl_matrix_set(cartan, 0, 1, -2*s*cos(a3)); gsl_matrix_set(cartan, 0, 2, -2/s*cos(a2)); gsl_matrix_set(cartan, 1, 0, -2/s*cos(a3)); gsl_matrix_set(cartan, 1, 1, 2); gsl_matrix_set(cartan, 1, 2, -2*s*cos(a1)); gsl_matrix_set(cartan, 2, 0, -2*s*cos(a2)); gsl_matrix_set(cartan, 2, 1, -2/s*cos(a1)); gsl_matrix_set(cartan, 2, 2, 2); } void initializeTriangleGenerators(gsl_matrix **gen, double a1, double a2, double a3, double s, double t, workspace_t *ws) { gsl_matrix *reflection_gen[3]; LOOP(i) { reflection_gen[i] = gsl_matrix_alloc(3, 3); gsl_matrix_set_identity(reflection_gen[i]); } double rho[3]; rho[0] = sqrt(s*s + 2*s*cos(a1) + 1); rho[1] = sqrt(s*s + 2*s*cos(a2) + 1); rho[2] = sqrt(s*s + 2*s*cos(a3) + 1); gsl_matrix_set(reflection_gen[0], 0, 0, -1.0); gsl_matrix_set(reflection_gen[0], 0, 1, rho[2]*t); gsl_matrix_set(reflection_gen[0], 0, 2, rho[1]/t); gsl_matrix_set(reflection_gen[1], 1, 0, rho[2]/t); gsl_matrix_set(reflection_gen[1], 1, 1, -1.0); gsl_matrix_set(reflection_gen[1], 1, 2, rho[0]*t); gsl_matrix_set(reflection_gen[2], 2, 0, rho[1]*t); gsl_matrix_set(reflection_gen[2], 2, 1, rho[0]/t); gsl_matrix_set(reflection_gen[2], 2, 2, -1.0); LOOP(i) { gsl_matrix_set_identity(gen[i]); gsl_matrix_set(gen[i], (i+1)%3, (i+1)%3, s); gsl_matrix_set(gen[i], (i+2)%3, (i+2)%3, 1/s); gsl_matrix_set_identity(gen[i+3]); gsl_matrix_set(gen[i+3], (i+1)%3, (i+1)%3, 1/s); gsl_matrix_set(gen[i+3], (i+2)%3, (i+2)%3, s); } LOOP(i) { multiply_left(reflection_gen[i], gen[(i+2)%3], ws); multiply_right(gen[(i+2)%3], reflection_gen[(i+1)%3], ws); multiply_left(reflection_gen[(i+1)%3], gen[(i+2)%3+3], ws); multiply_right(gen[(i+2)%3+3], reflection_gen[i], ws); } LOOP(i) gsl_matrix_free(reflection_gen[i]); } void initializeTriangleGeneratorsCurrent(gsl_matrix **gen, DrawingContext *ctx) { double angle[3]; LOOP(i) angle[i] = 2*M_PI*ctx->k[i]/ctx->p[i]; initializeTriangleGenerators(gen, angle[0], angle[1], angle[2], ctx->parameter2, ctx->parameter, ctx->ws); } int computeLimitCurve(DrawingContext *ctx) { workspace_t *ws = ctx->ws; gsl_matrix *cartan_pos = getTempMatrix(ctx->ws); gsl_matrix *cob_pos = getTempMatrix(ctx->ws); gsl_matrix *coxeter_pos = getTempMatrix(ctx->ws); gsl_matrix *coxeter_fixedpoints_pos = getTempMatrix(ctx->ws); gsl_matrix *fixedpoints_pos = getTempMatrix(ctx->ws); gsl_matrix *coxeter = getTempMatrix(ctx->ws); gsl_matrix *coxeter_fixedpoints = getTempMatrix(ctx->ws); gsl_matrix *fixedpoints = getTempMatrix(ctx->ws); gsl_matrix **gen = getTempMatrices(ctx->ws, 6); gsl_matrix **elements = getTempMatrices(ctx->ws, ctx->n_group_elements); groupelement_t *group = ctx->group; int success = 0; int column = ctx->use_repelling ? 2 : 0; double x,y; // int column = 1; ctx->limit_curve_count = -1; // do first in the Fuchsian positive case to get the angles cartanMatrix(cartan_pos, M_PI/ctx->p[0], M_PI/ctx->p[1], M_PI/ctx->p[2], 1.0); initializeTriangleGenerators(gen, 2*M_PI/ctx->p[0], 2*M_PI/ctx->p[1], 2*M_PI/ctx->p[2], 1.0, 1.0, ctx->ws); gsl_matrix_set_identity(elements[0]); for(int i = 1; i < ctx->n_group_elements; i++) { if(group[i].length % 2) continue; int letter = ROTATION_LETTER(group[i].letter, group[i].parent->letter); multiply(gen[letter], elements[group[i].parent->parent->id], elements[i]); } diagonalize_symmetric_form(cartan_pos, cob_pos, ws); multiply_many(ws, coxeter_pos, 3, gen[2], gen[1], gen[0]); int ev_count_pos = real_eigenvectors(coxeter_pos, coxeter_fixedpoints_pos, ws); if(ev_count_pos != 3) goto error_out; int n = 0; for(int i = 0; i < ctx->n_group_elements; i++) { if(group[i].length % 2) continue; multiply_many(ws, fixedpoints_pos, 3, cob_pos, elements[i], coxeter_fixedpoints_pos); ctx->limit_curve[3*n+2] = atan2( gsl_matrix_get(fixedpoints_pos, 2, column)/gsl_matrix_get(fixedpoints_pos, 0, column), gsl_matrix_get(fixedpoints_pos, 1, column)/gsl_matrix_get(fixedpoints_pos, 0, column)); n++; } // now do it again to calculate x and y coordinates initializeTriangleGeneratorsCurrent(gen, ctx); gsl_matrix_set_identity(elements[0]); for(int i = 1; i < ctx->n_group_elements; i++) { if(group[i].length % 2) continue; int letter = ROTATION_LETTER(group[i].letter, group[i].parent->letter); multiply(gen[letter], elements[group[i].parent->parent->id], elements[i]); } multiply_many(ws, coxeter, 3, gen[2], gen[1], gen[0]); int ev_count = real_eigenvectors(coxeter, coxeter_fixedpoints, ws); if(ev_count == 1) column = 0; if(ev_count == 0) goto error_out; ctx->limit_curve_count = 0; for(int i = 0; i < ctx->n_group_elements; i++) { if(group[i].length % 2) continue; multiply_many(ws, fixedpoints, 3, ctx->cob, elements[i], coxeter_fixedpoints); x = ctx->limit_curve[3*ctx->limit_curve_count ] = gsl_matrix_get(fixedpoints, 0, column)/gsl_matrix_get(fixedpoints, 2, column); y = ctx->limit_curve[3*ctx->limit_curve_count+1] = gsl_matrix_get(fixedpoints, 1, column)/gsl_matrix_get(fixedpoints, 2, column); ctx->limit_curve_count++; if((x - ctx->marking.x)*(x - ctx->marking.x) + (y - ctx->marking.y)*(y - ctx->marking.y) < 25e-10) { printf("limit point %d is close: length %d, ", i, group[i].length); for(groupelement_t *cur = &group[i]; cur->parent; cur = cur->parent) fputc('a' + cur->letter, stdout); // bcbcbca, bacbcacab, bc bca cb fputc('\n',stdout); } } qsort(ctx->limit_curve, ctx->limit_curve_count, 3*sizeof(double), compareAngle); // ctx->limit_curve_count = ctx->n_group_elements; success = 1; error_out: releaseTempMatrices(ctx->ws, 14+ctx->n_group_elements); return success; }