draw x^alpha curves; no want to refactor limit curve
This commit is contained in:
parent
d71b1b9507
commit
015b391cc0
11
Makefile
11
Makefile
@ -1,4 +1,4 @@
|
||||
HEADERS=triangle.h linalg.h queue.h initcairo.h main.h
|
||||
HEADERS=triangle.h linalg.h queue.h initcairo.h main.h exp_equation.h
|
||||
|
||||
SPECIAL_OPTIONS=-O0 -g -D_DEBUG
|
||||
#SPECIAL_OPTIONS=-O3 -pg -funroll-loops -fno-inline
|
||||
@ -11,8 +11,8 @@ OPTIONS=$(GENERAL_OPTIONS) $(CAIRO_OPTIONS) $(SPECIAL_OPTIONS)
|
||||
|
||||
all: limit_set
|
||||
|
||||
limit_set: limit_set.o linalg.o triangle.o initcairo.o draw.o main.o
|
||||
gcc $(OPTIONS) -o limit_set limit_set.o linalg.o triangle.o initcairo.o draw.o main.o -lm -lgsl -lcblas -lcairo -lX11
|
||||
limit_set: limit_set.o linalg.o triangle.o initcairo.o draw.o main.o exp_equation.o
|
||||
gcc $(OPTIONS) -o limit_set limit_set.o linalg.o triangle.o initcairo.o draw.o main.o exp_equation.o -lm -lgsl -lcblas -lcairo -lX11
|
||||
|
||||
linalg.o: linalg.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c linalg.c
|
||||
@ -32,5 +32,8 @@ draw.o: draw.c $(HEADERS)
|
||||
main.o: main.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c main.c
|
||||
|
||||
exp_equation.o: exp_equation.c $(HEADERS)
|
||||
gcc $(OPTIONS) -c exp_equation.c
|
||||
|
||||
clean:
|
||||
rm -f limit_set linalg.o triangle.o limit_set.o draw.o main.o
|
||||
rm -f limit_set linalg.o triangle.o limit_set.o draw.o main.o exp_equation.o
|
||||
|
216
draw.c
216
draw.c
@ -1,4 +1,5 @@
|
||||
#include "main.h"
|
||||
#include "exp_equation.h"
|
||||
|
||||
#define FMOD(x,y) (fmod(x,y) < 0 ? fmod(x,y) + y : fmod(x,y))
|
||||
#define ANGLE_DIFF(x,y) (FMOD((x)-(y), 2*M_PI))
|
||||
@ -145,6 +146,44 @@ int intersect_line_and_conic(DrawingContext *ctx, vector_t line, gsl_matrix *con
|
||||
releaseTempMatrices(ctx->ws, 1);
|
||||
}
|
||||
|
||||
// intersect the line given by the covector "line" with the orbit of "orbit_point"
|
||||
// by the one--parameter subgroup of SL(3,R) which contains the element "loxodromic"
|
||||
// in an eigenbasis of "loxodromic", this corresponds
|
||||
int intersect_line_and_loxodromic_orbit(DrawingContext *ctx, vector_t line, gsl_matrix *frame, double *logeigenvalues, vector_t start, vector_t *out)
|
||||
{
|
||||
vector_t line_in_frame = apply_transpose(frame, line);
|
||||
vector_t start_in_frame = apply_pseudoinverse(frame, start);
|
||||
|
||||
vector_t a, x;
|
||||
LOOP(i) a.x[i] = logeigenvalues[i];
|
||||
LOOP(i) x.x[i] = line_in_frame.x[i]*start_in_frame.x[i];
|
||||
|
||||
double t[2];
|
||||
vector_t v[2];
|
||||
int n1, n2;
|
||||
|
||||
n1 = solve_linear_exp(a, x, t);
|
||||
for(int i = 0; i < n1; i++) {
|
||||
LOOP(j) v[i].x[j] = exp(a.x[j]*t[i]) * start_in_frame.x[j];
|
||||
out[i] = apply(frame, v[i]);
|
||||
}
|
||||
|
||||
x.x[1] *= -1;
|
||||
n2 = solve_linear_exp(a, x, t);
|
||||
for(int i = 0; i < n2; i++) {
|
||||
LOOP(j) v[i].x[j] = exp(a.x[j]*t[i]) * start_in_frame.x[j];
|
||||
v[i].x[1] *= -1;
|
||||
out[i+n1] = apply(frame, v[i]);
|
||||
}
|
||||
|
||||
if(n1+n2 > 2) {
|
||||
fprintf(stderr, "more than 2 solutions in intersect_line_and_loxodromic_orbit()!\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
return n1+n2;
|
||||
}
|
||||
|
||||
// should be three collinear vectors!
|
||||
double halfCR(vector_t x, vector_t y, vector_t z)
|
||||
{
|
||||
@ -500,6 +539,48 @@ void drawRotationOrbitFrame(DrawingContext *ctx, gsl_matrix *frame, vector_t sta
|
||||
releaseTempVectors(ctx->ws, 2);
|
||||
}
|
||||
|
||||
void drawLoxodromicOrbitFrame(DrawingContext *ctx, gsl_matrix *frame, double *logeigenvalues, vector_t start)
|
||||
{
|
||||
vector_t start_in_frame = apply_pseudoinverse(frame, start);
|
||||
int iterations = 500;
|
||||
double stepsize = 0.02;
|
||||
vector_t x, w;
|
||||
point_t p;
|
||||
cairo_t *C = ctx->cairo;
|
||||
double t;
|
||||
|
||||
int previous_inside = 0;
|
||||
for(int k = 0; k <= iterations; k++) {
|
||||
// 0 = repelling fixed point, iterations/2 = attracting fixed point
|
||||
if(k == 0 || k == iterations) {
|
||||
w.x[0] = 0.0; w.x[1] = 0.0; w.x[2] = 1.0;
|
||||
} else if(k == iterations/2) {
|
||||
w.x[0] = 1.0; w.x[1] = 0.0; w.x[2] = 0.0;
|
||||
} else if(k < iterations/2) {
|
||||
t = (k-(double)iterations/4.0)*stepsize;
|
||||
LOOP(i) w.x[i] = start_in_frame.x[i] * exp(logeigenvalues[i]*t);
|
||||
w.x[1] *= -1;
|
||||
} else {
|
||||
t = ((double)iterations*3.0/4.0-k)*stepsize;
|
||||
LOOP(i) w.x[i] = start_in_frame.x[i] * exp(logeigenvalues[i]*t);
|
||||
}
|
||||
|
||||
x = apply(frame, w);
|
||||
p = vectorToPoint(ctx, x);
|
||||
|
||||
if(isInsideBB(ctx, p)) {
|
||||
if(!previous_inside)
|
||||
cairo_move_to(C, p.x, p.y);
|
||||
else
|
||||
cairo_line_to(C, p.x, p.y);
|
||||
previous_inside = 1;
|
||||
} else {
|
||||
previous_inside = 0;
|
||||
}
|
||||
}
|
||||
|
||||
cairo_stroke(C);
|
||||
}
|
||||
|
||||
void drawConic(DrawingContext *ctx, gsl_matrix *form)
|
||||
{
|
||||
@ -892,92 +973,22 @@ void drawBoxes(DrawingContext *ctx)
|
||||
cairo_set_line_width(C, 2.0/ctx->dim->scalefactor);
|
||||
cairo_set_source_rgb(C, 0.6, 0.6, 0.6);
|
||||
|
||||
// drawRotationOrbit(ctx, "ab", p[0][0]);
|
||||
// drawRotationOrbit(ctx, "bc", p[0][0]);
|
||||
// drawRotationOrbit(ctx, "ca", p[0][0]);
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(tmp, i, j, p[0][j].x[i]);
|
||||
double evs[3];
|
||||
wordEigenvalues(ctx, "abc", evs);
|
||||
LOOP(i) evs[i] = log(fabs(evs[i]));
|
||||
drawLoxodromicOrbitFrame(ctx, tmp, evs, p[1][0]);
|
||||
drawLoxodromicOrbitFrame(ctx, tmp, evs, p[1][2]);
|
||||
|
||||
// drawRotationOrbit(ctx, "ab", p[0][2]);
|
||||
// drawRotationOrbit(ctx, "bc", p[0][2]);
|
||||
// drawRotationOrbit(ctx, "ca", p[0][2]);
|
||||
|
||||
// gsl_matrix_set_zero(order3);
|
||||
// LOOP(i) gsl_matrix_set(order3, (i+1)%3, i, 1);
|
||||
// rotation_frame(order3, frame, ctx->ws);
|
||||
// drawRotationOrbitFrame(ctx, frame, p[0][0]);
|
||||
// drawRotationOrbitFrame(ctx, frame, p[0][2]);
|
||||
|
||||
vector_t line1;
|
||||
vector_t line2;
|
||||
double t;
|
||||
int positives;
|
||||
|
||||
/*
|
||||
// conic 1
|
||||
line1 = cross(p[0][0],p[0][1]);
|
||||
line2 = cross(p[1][0],p[1][1]);
|
||||
degenerate_conic(line1, line2, tmp);
|
||||
line1 = cross(p[0][0], p[1][0]);
|
||||
line2 = cross(p[0][0], p[1][0]);
|
||||
degenerate_conic(line1, line2, tmp2);
|
||||
t = - conic_value(tmp, p[2][0]) / conic_value(tmp2, p[2][0]);
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(conic, i, j,
|
||||
gsl_matrix_get(tmp, i, j) +
|
||||
gsl_matrix_get(tmp2, i, j)*t);
|
||||
positives = diagonalize_symmetric_form(conic, tmp, ctx->ws);
|
||||
if(positives == 2)
|
||||
LOOP(i) LOOP(j) *gsl_matrix_ptr(conic, i, j) *= -1;
|
||||
drawConic(ctx, conic);
|
||||
*/
|
||||
|
||||
// conic 2
|
||||
line1 = cross(p[0][0],p[0][1]);
|
||||
line2 = cross(p[2][0],p[2][1]);
|
||||
degenerate_conic(line1, line2, tmp);
|
||||
line1 = cross(p[0][0], p[2][0]);
|
||||
line2 = cross(p[0][0], p[2][0]);
|
||||
degenerate_conic(line1, line2, tmp2);
|
||||
t = - conic_value(tmp, p[1][0]) / conic_value(tmp2, p[1][0]);
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(conic, i, j,
|
||||
gsl_matrix_get(tmp, i, j) +
|
||||
gsl_matrix_get(tmp2, i, j)*t);
|
||||
positives = diagonalize_symmetric_form(conic, tmp, ctx->ws);
|
||||
if(positives == 2)
|
||||
LOOP(i) LOOP(j) *gsl_matrix_ptr(conic, i, j) *= -1;
|
||||
drawConic(ctx, conic);
|
||||
|
||||
/*
|
||||
// conic 3
|
||||
line1 = cross(p[0][2],p[0][1]);
|
||||
line2 = cross(p[1][2],p[1][1]);
|
||||
degenerate_conic(line1, line2, tmp);
|
||||
line1 = cross(p[0][2], p[1][2]);
|
||||
line2 = cross(p[0][2], p[1][2]);
|
||||
degenerate_conic(line1, line2, tmp2);
|
||||
t = - conic_value(tmp, p[2][2]) / conic_value(tmp2, p[2][2]);
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(conic, i, j,
|
||||
gsl_matrix_get(tmp, i, j) +
|
||||
gsl_matrix_get(tmp2, i, j)*t);
|
||||
positives = diagonalize_symmetric_form(conic, tmp, ctx->ws);
|
||||
if(positives == 2)
|
||||
LOOP(i) LOOP(j) *gsl_matrix_ptr(conic, i, j) *= -1;
|
||||
drawConic(ctx, conic);
|
||||
*/
|
||||
|
||||
// conic 4
|
||||
line1 = cross(p[0][2],p[0][1]);
|
||||
line2 = cross(p[2][2],p[2][1]);
|
||||
degenerate_conic(line1, line2, tmp);
|
||||
line1 = cross(p[0][2], p[2][2]);
|
||||
line2 = cross(p[0][2], p[2][2]);
|
||||
degenerate_conic(line1, line2, tmp2);
|
||||
t = - conic_value(tmp, p[1][2]) / conic_value(tmp2, p[1][2]);
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(conic, i, j,
|
||||
gsl_matrix_get(tmp, i, j) +
|
||||
gsl_matrix_get(tmp2, i, j)*t);
|
||||
positives = diagonalize_symmetric_form(conic, tmp, ctx->ws);
|
||||
if(positives == 2)
|
||||
LOOP(i) LOOP(j) *gsl_matrix_ptr(conic, i, j) *= -1;
|
||||
drawConic(ctx, conic);
|
||||
vector_t x;
|
||||
for(int i = 0; i < ctx->n_group_elements; i++) {
|
||||
LOOP(j) x.x[j] = ctx->limit_curve[12*i+3+j];
|
||||
x = apply_pseudoinverse(tmp, x);
|
||||
printf("%f\n",
|
||||
pow(fabs(x.x[0]), evs[1]-evs[2]) *
|
||||
pow(fabs(x.x[1]), evs[2]-evs[0]) *
|
||||
pow(fabs(x.x[2]), evs[0]-evs[1]));
|
||||
}
|
||||
|
||||
cairo_restore(C);
|
||||
releaseTempMatrices(ctx->ws, 9);
|
||||
@ -1101,6 +1112,39 @@ void drawBoxes2(DrawingContext *ctx)
|
||||
perimeter2 += log(value);
|
||||
approx_perimeter2 += log(value);
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0.6, 0.1);
|
||||
|
||||
LOOP(i) LOOP(j) gsl_matrix_set(tmp, i, j, p[0][j].x[i]);
|
||||
double evs[3];
|
||||
wordEigenvalues(ctx, "abc", evs);
|
||||
LOOP(i) evs[i] = log(fabs(evs[i]));
|
||||
drawLoxodromicOrbitFrame(ctx, tmp, evs, p[1][0]);
|
||||
drawLoxodromicOrbitFrame(ctx, tmp, evs, p[1][2]);
|
||||
|
||||
vector_t intersection[2];
|
||||
double hC0, hC1;
|
||||
|
||||
cairo_set_source_rgb(C, 1, 0, 0);
|
||||
intersect_line_and_loxodromic_orbit(ctx, cross(a,b), tmp, evs, p[1][2], intersection);
|
||||
hC0 = halfCR(a, b, intersection[0]);
|
||||
hC1 = halfCR(a, b, intersection[1]);
|
||||
if(hC0 > hC1)
|
||||
drawVector(ctx, intersection[0]);
|
||||
else
|
||||
drawVector(ctx, intersection[1]);
|
||||
approx_perimeter1 += log(hC0 > hC1 ? hC0 : hC1);
|
||||
|
||||
cairo_set_source_rgb(C, 0, 0, 1);
|
||||
intersect_line_and_loxodromic_orbit(ctx, cross(a,b), tmp, evs, p[1][0], intersection);
|
||||
hC0 = halfCR(b, a, intersection[0]);
|
||||
hC1 = halfCR(b, a, intersection[1]);
|
||||
if(hC0 > hC1)
|
||||
drawVector(ctx, intersection[0]);
|
||||
else
|
||||
drawVector(ctx, intersection[1]);
|
||||
approx_perimeter2 += log(hC0 > hC1 ? hC0 : hC1);
|
||||
|
||||
/*
|
||||
vector_t conic_intersection[2];
|
||||
double hC0, hC1;
|
||||
|
||||
@ -1150,10 +1194,12 @@ void drawBoxes2(DrawingContext *ctx)
|
||||
snprintf(ctx->extra_text, 1000, "perimeter1 = %f (%f), perimeter2 = %f (%f)",
|
||||
perimeter1, approx_perimeter1,
|
||||
perimeter2, approx_perimeter2);
|
||||
*/
|
||||
|
||||
printf("%f %f %f %f %f %f\n",
|
||||
t, s, perimeter1, perimeter2, approx_perimeter1, approx_perimeter2);
|
||||
|
||||
|
||||
cairo_restore(C);
|
||||
releaseTempMatrices(ctx->ws, 7);
|
||||
releaseTempVectors(ctx->ws, 2);
|
||||
|
183
exp_equation.c
Normal file
183
exp_equation.c
Normal file
@ -0,0 +1,183 @@
|
||||
#include "main.h"
|
||||
#include "exp_equation.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <gsl/gsl_errno.h>
|
||||
#include <gsl/gsl_math.h>
|
||||
#include <gsl/gsl_roots.h>
|
||||
|
||||
#define EPSILON 1e-9
|
||||
#define LOOP(i) for(int i = 0; i < 3; i++)
|
||||
|
||||
struct solve_exp_plus_exp_params
|
||||
{
|
||||
double alpha;
|
||||
double beta;
|
||||
double x;
|
||||
};
|
||||
|
||||
static double solve_exp_plus_exp_f(double t, void *_params)
|
||||
{
|
||||
struct solve_exp_plus_exp_params *params = (struct solve_exp_plus_exp_params*)_params;
|
||||
|
||||
// return exp(params->alpha * t) + exp(params->beta * t) - params->x;
|
||||
return log(exp(params->alpha * t) + exp(params->beta * t)) - log(params->x);
|
||||
}
|
||||
|
||||
static double solve_exp_plus_exp_df(double t, void *_params)
|
||||
{
|
||||
struct solve_exp_plus_exp_params *params = (struct solve_exp_plus_exp_params*)_params;
|
||||
|
||||
// return params->alpha * exp(params->alpha * t) + params->beta * exp(params->beta * t);
|
||||
return params->alpha + (params->beta - params->alpha) / (1 + exp((params->alpha-params->beta)*t));
|
||||
}
|
||||
|
||||
static void solve_exp_plus_exp_fdf(double t, void *params, double *f, double *df)
|
||||
{
|
||||
*f = solve_exp_plus_exp_f(t, params);
|
||||
*df = solve_exp_plus_exp_df(t, params);
|
||||
}
|
||||
|
||||
// solve the equation exp(alpha t) + exp(beta t) = x for t
|
||||
int solve_exp_plus_exp(double alpha, double beta, double x, double *t)
|
||||
{
|
||||
if(alpha <= 0 && beta >= 0 || alpha >= 0 && beta <= 0) {
|
||||
double critical =
|
||||
pow(-beta/alpha, alpha/(alpha-beta)) +
|
||||
pow(-beta/alpha, beta/(alpha-beta));
|
||||
|
||||
if(x < critical)
|
||||
return 0;
|
||||
else if (x < critical + EPSILON) {
|
||||
t[0] = log(-beta/alpha)/(alpha-beta);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Newton this
|
||||
gsl_root_fdfsolver *solver = gsl_root_fdfsolver_alloc(gsl_root_fdfsolver_newton);
|
||||
struct solve_exp_plus_exp_params params;
|
||||
params.alpha = alpha;
|
||||
params.beta = beta;
|
||||
params.x = x;
|
||||
gsl_function_fdf FDF;
|
||||
FDF.f = &solve_exp_plus_exp_f;
|
||||
FDF.df = &solve_exp_plus_exp_df;
|
||||
FDF.fdf = &solve_exp_plus_exp_fdf;
|
||||
FDF.params = (void *)¶ms;
|
||||
int status;
|
||||
double root, lastroot;
|
||||
|
||||
for(int r = 0; r < 2; r++) {
|
||||
root = r == 0 ? log(x)/beta : log(x)/alpha;
|
||||
gsl_root_fdfsolver_set(solver, &FDF, root);
|
||||
for(int i = 0; i < 100; i++) {
|
||||
gsl_root_fdfsolver_iterate(solver);
|
||||
lastroot = root;
|
||||
root = gsl_root_fdfsolver_root(solver);
|
||||
status = gsl_root_test_delta(root, lastroot, 0, 1e-9);
|
||||
|
||||
if(status == GSL_SUCCESS)
|
||||
break;
|
||||
|
||||
// printf("iteration %d, root %f\n", i, root);
|
||||
}
|
||||
t[r] = root;
|
||||
}
|
||||
|
||||
gsl_root_fdfsolver_free(solver);
|
||||
|
||||
return 2;
|
||||
} else {
|
||||
// Newton with start value 0
|
||||
gsl_root_fdfsolver *solver = gsl_root_fdfsolver_alloc(gsl_root_fdfsolver_newton);
|
||||
struct solve_exp_plus_exp_params params;
|
||||
params.alpha = alpha;
|
||||
params.beta = beta;
|
||||
params.x = x;
|
||||
gsl_function_fdf FDF;
|
||||
FDF.f = &solve_exp_plus_exp_f;
|
||||
FDF.df = &solve_exp_plus_exp_df;
|
||||
FDF.fdf = &solve_exp_plus_exp_fdf;
|
||||
FDF.params = (void *)¶ms;
|
||||
int status;
|
||||
double root, lastroot;
|
||||
|
||||
root = 0;
|
||||
gsl_root_fdfsolver_set(solver, &FDF, root);
|
||||
for(int i = 0; i < 100; i++) {
|
||||
gsl_root_fdfsolver_iterate(solver);
|
||||
lastroot = root;
|
||||
root = gsl_root_fdfsolver_root(solver);
|
||||
status = gsl_root_test_delta(root, lastroot, 0, 1e-9);
|
||||
|
||||
// printf("iteration %d, root %f\n", i, root);
|
||||
|
||||
if(status == GSL_SUCCESS)
|
||||
break;
|
||||
}
|
||||
t[0] = root;
|
||||
|
||||
gsl_root_fdfsolver_free(solver);
|
||||
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// solve the equation x1 exp(a1 t) + x2 exp(a2 t) + x3 exp(a3 t) = 0
|
||||
int solve_linear_exp(vector_t a, vector_t x, double *t)
|
||||
{
|
||||
if(x.x[0] > 0 && x.x[1] > 0 && x.x[2] > 0 ||
|
||||
x.x[0] < 0 && x.x[1] < 0 && x.x[2] < 0)
|
||||
return 0;
|
||||
|
||||
// ensure that y[0] < 0 and y[1], y[2] > 0
|
||||
int j;
|
||||
vector_t y, b;
|
||||
for(j = 0; j < 3; j++)
|
||||
if(x.x[(j+1)%3] * x.x[(j+2)%3] > 0)
|
||||
break;
|
||||
LOOP(i) y.x[i] = x.x[(i+j)%3];
|
||||
if(y.x[0] > 0)
|
||||
LOOP(i) y.x[i] *= -1;
|
||||
LOOP(i) b.x[i] = a.x[(i+j)%3];
|
||||
|
||||
double T = (log(y.x[1]) - log(y.x[2])) / (b.x[2] - b.x[1]);
|
||||
double rhs = - y.x[0] *
|
||||
pow(y.x[1], (b.x[0]-b.x[2])/(b.x[2]-b.x[1])) *
|
||||
pow(y.x[2], (b.x[0]-b.x[1])/(b.x[1]-b.x[2]));
|
||||
|
||||
int n = solve_exp_plus_exp(b.x[1] - b.x[0], b.x[2] - b.x[0], rhs, t);
|
||||
|
||||
for(int i = 0; i < n; i++)
|
||||
t[i] += T;
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
/*
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
// int n = solve_exp_plus_exp(atof(argv[1]), atof(argv[2]), atof(argv[3]), result);
|
||||
|
||||
double result[2];
|
||||
vector_t a, x;
|
||||
a.x[0] = atof(argv[1]);
|
||||
a.x[1] = atof(argv[2]);
|
||||
a.x[2] = atof(argv[3]);
|
||||
x.x[0] = atof(argv[4]);
|
||||
x.x[1] = atof(argv[5]);
|
||||
x.x[2] = atof(argv[6]);
|
||||
int n = solve_linear_exp(a, x, result);
|
||||
|
||||
if(n == 0)
|
||||
printf("0 results found\n");
|
||||
else if(n == 1)
|
||||
printf("1 result found: %.9f\n", result[0]);
|
||||
else if(n == 2)
|
||||
printf("2 results found: %.9f and %.9f\n", result[0], result[1]);
|
||||
else
|
||||
printf("%d results found\n", n);
|
||||
return 0;
|
||||
}
|
||||
*/
|
14
exp_equation.h
Normal file
14
exp_equation.h
Normal file
@ -0,0 +1,14 @@
|
||||
#ifndef EXP_EQUATION_H
|
||||
#define EXP_EQUATION_H
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <gsl/gsl_errno.h>
|
||||
#include <gsl/gsl_math.h>
|
||||
#include <gsl/gsl_roots.h>
|
||||
|
||||
int solve_exp_plus_exp(double alpha, double beta, double x, double *t);
|
||||
int solve_linear_exp(vector_t a, vector_t x, double *t);
|
||||
|
||||
#endif
|
4
main.c
4
main.c
@ -49,8 +49,8 @@ void setupContext(DrawingContext *ctx, int argc, char *argv[])
|
||||
ctx->marking2.y = -0.11873;
|
||||
ctx->marking3.x = -0.73679;
|
||||
ctx->marking3.y = -0.21873;
|
||||
ctx->distance_parameter1 = 0.95;
|
||||
ctx->distance_parameter2 = 0.95;
|
||||
ctx->distance_parameter1 = 0.45;
|
||||
ctx->distance_parameter2 = 0.2;
|
||||
ctx->show_coxeter_orbit = 0;
|
||||
ctx->extra_text = malloc(1000*sizeof(char));
|
||||
memset(ctx->extra_text, 0, 1000*sizeof(char));
|
||||
|
Loading…
Reference in New Issue
Block a user