{ "cells": [ { "cell_type": "code", "execution_count": 168, "metadata": {}, "outputs": [], "source": [ "import plyvel\n", "from itertools import islice\n", "\n", "%run -i read_tree.py" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "db = plyvel.DB('../node/nodedir/data/application.db')\n", "height = max_height(db)\n", "height" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "it = iterate(db, 's/k:mint/', height)\n", "[k for k, v in it]\n", "it.inner.lookups" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dict(parse_struct(next(iterate(db, 's/k:mint/', height, key = [138]))[1]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "it = iterate(db, 's/k:emissions/', height, key = [62, 64], format = 'Qss')\n", "ooiiregrets = [(k[2],k[3],value[1],float(value[2])) for k,v in it for value in (dict(parse_struct(v)),)]\n", "\n", "len(ooiiregrets), it.inner.lookups" ] }, { "cell_type": "code", "execution_count": 181, "metadata": {}, "outputs": [], "source": [ "keynames = {0: \"Params\", 1: \"TotalStake\", 2: \"TopicStake\", 3: \"Rewards\", 4: \"NextTopicId\", 5: \"Topics\", 6: \"TopicWorkers\", 7: \"TopicReputers\", 8: \"DelegatorStake\", 9: \"DelegateStakePlacement\", 10: \"TargetStake\", 11: \"Inferences\", 12: \"Forecasts\", 13: \"WorkerNodes\", 14: \"ReputerNodes\", 15: \"LatestInferencesTs\", 16: \"ActiveTopics\", 17: \"AllInferences\", 18: \"AllForecasts\", 19: \"AllLossBundles\", 20: \"StakeRemoval\", 21: \"StakeByReputerAndTopicId\", 22: \"DelegateStakeRemoval\", 23: \"AllTopicStakeSum\", 24: \"AddressTopics\", 24: \"WhitelistAdmins\", 25: \"ChurnableTopics\", 26: \"RewardableTopics\", 27: \"NetworkLossBundles\", 28: \"NetworkRegrets\", 29: \"StakeByReputerAndTopicId\", 30: \"ReputerScores\", 31: \"InferenceScores\", 32: \"ForecastScores\", 33: \"ReputerListeningCoefficient\", 34: \"InfererNetworkRegrets\", 35: \"ForecasterNetworkRegrets\", 36: \"OneInForecasterNetworkRegrets\", 37: \"OneInForecasterSelfNetworkRegrets\", 38: \"UnfulfilledWorkerNonces\", 39: \"UnfulfilledReputerNonces\", 40: \"FeeRevenueEpoch\", 41: \"TopicFeeRevenue\", 42: \"PreviousTopicWeight\", 43: \"PreviousReputerRewardFraction\", 44: \"PreviousInferenceRewardFraction\", 45: \"PreviousForecastRewardFraction\", 46: \"InfererScoreEmas\", 47: \"ForecasterScoreEmas\", 48: \"ReputerScoreEmas\", 49: \"TopicRewardNonce\", 50: \"DelegateRewardPerShare\", 51: \"PreviousPercentageRewardToStakedReputers\", 52: \"StakeRemovalsByBlock\", 53: \"DelegateStakeRemovalsByBlock\", 54: \"StakeRemovalsByActor\", 55: \"DelegateStakeRemovalsByActor\", 56: \"TopicLastWorkerCommit\", 57: \"TopicLastReputerCommit\", 58: \"TopicLastWorkerPayload\", 59: \"TopicLastReputerPayload\", 60: \"OpenWorkerWindows\", 61: \"LatestNaiveInfererNetworkRegrets\", 62: \"LatestOneOutInfererInfererNetworkRegrets\", 63: \"LatestOneOutInfererForecasterNetworkRegrets\", 64: \"LatestOneOutForecasterInfererNetworkRegrets\", 65: \"LatestOneOutForecasterForecasterNetworkRegrets\", 66: \"PreviousForecasterScoreRatio\", 67: \"LastDripBlock\", 68: \"TopicToNextPossibleChurningBlock\", 69: \"BlockToActiveTopics\", 70: \"BlockToLowestActiveTopicWeight\", 71: \"PreviousTopicQuantileInfererScoreEma\", 72: \"PreviousTopicQuantileForecasterScoreEma\", 73: \"PreviousTopicQuantileReputerScoreEma\", 74: \"CountInfererInclusionsInTopic\", 75: \"CountForecasterInclusionsInTopic\", 76: \"ActiveInferers\", 77: \"ActiveForecasters\", 78: \"ActiveReputers\", 79: \"LowestInfererScoreEma\", 80: \"LowestForecasterScoreEma\", 81: \"LowestReputerScoreEma\", 82: \"LossBundles\", 83: \"TotalSumPreviousTopicWeights\", 84: \"RewardCurrentBlockEmission\", 85: \"GlobalWhitelist\", 86: \"TopicCreatorWhitelist\", 87: \"TopicWorkerWhitelist\", 88: \"TopicReputerWhitelist\", 89: \"TopicWorkerWhitelistEnabled\", 90: \"TopicReputerWhitelistEnabled\", 91: \"LastMedianInferences\", 92: \"MadInferences\", 93: \"InitialInfererEmaScore\", 94: \"InitialForecasterEmaScore\", 95: \"InitialReputerEmaScore\", 96: \"GlobalWorkerWhitelist\", 97: \"GlobalReputerWhitelist\", 98: \"GlobalAdminWhitelist\", 99: \"LatestRegretStdNorm\", 100: \"LatestInfererWeights\", 101: \"LatestForecasterWeights\", 102: \"NetworkInferences\", 103: \"OutlierResistantNetworkInferences\", 104: \"MonthlyReputerRewards\", 105: \"MonthlyTopicRewards\",}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "lens = np.zeros(256, dtype = int)\n", "\n", "for field in range(255):\n", " lens[field] = count(db, 's/k:emissions/', height, key = [field])\n", "\n", "order = np.lexsort((np.arange(256)[::-1], lens))[::-1]\n", "\n", "print('Map lengths:')\n", "\n", "for i in range(len(order)):\n", " if lens[order[i]] == 0 and order[i] not in keynames:\n", " break\n", "\n", " print(f'{keynames[order[i]]:50} {lens[order[i]]:9d}')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# def has_prefix(db, prefix: bytes) -> bool:\n", "# it = db.iterator(start = prefix)\n", "# try:\n", "# first_key, _ = next(it)\n", "# return first_key.startswith(prefix)\n", "# except StopIteration:\n", "# return False\n", "# finally:\n", "# it.close()\n", "\n", "# found = []\n", "# prefixes = [b's/']\n", "\n", "# for i in range(20):\n", "# new_prefixes = []\n", "\n", "# for p in prefixes:\n", "# for i in range(256):\n", "# b = p + bytes([i])\n", "# if has_prefix(db, b):\n", "# if b.endswith(b'/'):\n", "# found.append((b, db.approximate_size(b, b + b'\\xff')))\n", "# else:\n", "# new_prefixes.append(b)\n", "# # new_prefixes.append(b)\n", "\n", "# prefixes = new_prefixes\n", "\n", "# found" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.7" } }, "nbformat": 4, "nbformat_minor": 2 }