hyperbolic_tilings/linalg.c
2022-03-02 10:48:04 -06:00

233 lines
7.2 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#include <memory.h>
#include "linalg.h"
#define ERROR(condition, msg, ...) if(condition){fprintf(stderr, msg, ##__VA_ARGS__); exit(1);}
#define FCMP(x, y) gsl_fcmp(x, y, 1e-10)
/*********************************************** temporary storage ********************************************************/
workspace_t *workspace_alloc(int n)
{
workspace_t *result = (workspace_t*)malloc(sizeof(workspace_t));
result->n = n;
result->work_nonsymmv = gsl_eigen_nonsymmv_alloc(n);
result->work_symmv = gsl_eigen_symmv_alloc(n);
result->work_sv = gsl_vector_alloc(n);
result->eval_complex = gsl_vector_complex_alloc(n);
result->evec_complex = gsl_matrix_complex_alloc(n, n);
result->eval_real = gsl_vector_alloc(n);
result->evec_real = gsl_matrix_alloc(n, n);
result->tmp = gsl_matrix_alloc(n, n);
result->permutation = gsl_permutation_alloc(n);
for(int i = 0; i < 20; i++)
result->stack[i] = gsl_matrix_alloc(n, n);
return result;
}
void workspace_free(workspace_t *workspace)
{
gsl_eigen_nonsymmv_free(workspace->work_nonsymmv);
gsl_eigen_symmv_free(workspace->work_symmv);
gsl_vector_free(workspace->work_sv);
gsl_vector_complex_free(workspace->eval_complex);
gsl_matrix_complex_free(workspace->evec_complex);
gsl_vector_free(workspace->eval_real);
gsl_matrix_free(workspace->evec_real);
gsl_matrix_free(workspace->tmp);
gsl_permutation_free(workspace->permutation);
for(int i = 0; i < 20; i++)
gsl_matrix_free(workspace->stack[i]);
}
/************************************************** basic operations ********************************************************/
void invert(gsl_matrix *in, gsl_matrix *out, workspace_t *ws)
{
int s;
gsl_matrix_memcpy(ws->tmp, in);
gsl_linalg_LU_decomp(ws->tmp, ws->permutation, &s);
gsl_linalg_LU_invert(ws->tmp, ws->permutation, out);
}
void conjugate(gsl_matrix *in, gsl_matrix *conjugator, gsl_matrix *out, workspace_t *ws)
{
invert(conjugator, out, ws); // use out to temporarily store inverse conjugator
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, in, out, 0.0, ws->tmp); // in * conjugator^{-1}
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, conjugator, ws->tmp, 0.0, out);
}
void multiply(gsl_matrix *a, gsl_matrix *b, gsl_matrix *out)
{
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, a, b, 0.0, out);
}
void multiply_right(gsl_matrix *a, gsl_matrix *b, workspace_t *ws)
{
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, a, b, 0.0, ws->stack[0]);
gsl_matrix_memcpy(a, ws->stack[0]);
}
void multiply_left(gsl_matrix *a, gsl_matrix *b, workspace_t *ws)
{
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, a, b, 0.0, ws->stack[0]);
gsl_matrix_memcpy(b, ws->stack[0]);
}
void multiply_many(workspace_t *ws, gsl_matrix *out, int n, ...)
{
va_list args;
va_start(args, n);
gsl_matrix_set_identity(out);
for(int i = 0; i < n; i++) {
gsl_matrix *cur = va_arg(args, gsl_matrix *);
multiply_right(out, cur, ws);
}
va_end(args);
}
void cartan_calc(gsl_matrix *g, double *mu, workspace_t *ws)
{
gsl_matrix_memcpy(ws->tmp, g);
gsl_linalg_SV_decomp(ws->tmp, ws->evec_real, ws->eval_real, ws->work_sv);
for(int i = 0; i < ws->n - 1; i++)
mu[i] = log(gsl_vector_get(ws->eval_real, i) / gsl_vector_get(ws->eval_real, i+1));
}
void initialize(gsl_matrix *g, double *data, int x, int y)
{
gsl_matrix_view view = gsl_matrix_view_array(data, x, y);
gsl_matrix_memcpy(g, &view.matrix);
}
void rotation_matrix(gsl_matrix *g, double *vector)
{
double normalized[3];
double norm = sqrt(vector[0]*vector[0] + vector[1]*vector[1] + vector[2]*vector[2]);
for(int i = 0; i < 3; i++)
normalized[i] = vector[i] / norm;
gsl_matrix_set_identity(g);
gsl_matrix_set(g, 0, 0, cos(norm));
gsl_matrix_set(g, 0, 1, -sin(norm) * normalized[2]);
gsl_matrix_set(g, 0, 2, +sin(norm) * normalized[1]);
gsl_matrix_set(g, 1, 0, +sin(norm) * normalized[2]);
gsl_matrix_set(g, 1, 1, cos(norm));
gsl_matrix_set(g, 1, 2, -sin(norm) * normalized[0]);
gsl_matrix_set(g, 2, 0, -sin(norm) * normalized[1]);
gsl_matrix_set(g, 2, 1, +sin(norm) * normalized[0]);
gsl_matrix_set(g, 2, 2, cos(norm));
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
g->data[i * g->tda + j] += (1 - cos(norm)) * normalized[i] * normalized[j];
}
double trace(gsl_matrix *g)
{
return gsl_matrix_get(g, 0, 0) + gsl_matrix_get(g, 1, 1) + gsl_matrix_get(g, 2, 2);
}
double determinant(gsl_matrix *g, workspace_t *ws)
{
int s;
gsl_matrix_memcpy(ws->tmp, g);
gsl_linalg_LU_decomp(ws->tmp, ws->permutation, &s);
return gsl_linalg_LU_det(ws->tmp, s);
}
int jordan_calc(gsl_matrix *g, double *evs, workspace_t *ws)
{
gsl_eigen_nonsymmv_params(1, ws->work_nonsymmv);
gsl_eigen_nonsymmv(g, ws->eval_complex, ws->evec_complex, ws->work_nonsymmv);
gsl_eigen_nonsymmv_sort(ws->eval_complex, ws->evec_complex, GSL_EIGEN_SORT_ABS_DESC);
int real = 1;
for(int i = 0; i < ws->n; i++)
if(FCMP(GSL_IMAG(gsl_vector_complex_get(ws->eval_complex, i)), 0) != 0)
real = 0;
/* if(!real) {
printf("We have non-real eigenvalues!\n");
exit(1);
}*/
for(int i = 0; i < ws->n; i++) {
evs[2*i] = GSL_REAL(gsl_vector_complex_get(ws->eval_complex, i));
evs[2*i+1] = GSL_IMAG(gsl_vector_complex_get(ws->eval_complex, i));
}
return real;
}
void eigenvectors(gsl_matrix *g, gsl_matrix *evec_real, workspace_t *ws)
{
gsl_matrix_memcpy(ws->stack[0], g);
gsl_eigen_nonsymmv_params(0, ws->work_nonsymmv);
int r = gsl_eigen_nonsymmv(ws->stack[0], ws->eval_complex, ws->evec_complex, ws->work_nonsymmv);
ERROR(r, "gsl_eigen_nonsymmv failed!\n");
gsl_eigen_nonsymmv_sort(ws->eval_complex, ws->evec_complex, GSL_EIGEN_SORT_ABS_DESC);
int real = 1;
for(int i = 0; i < ws->n; i++)
if(FCMP(GSL_IMAG(gsl_vector_complex_get(ws->eval_complex, i)), 0) != 0)
real = 0;
if(!real) {
fprintf(stderr,"We have non-real eigenvalues!\n");
// exit(1);
}
for(int i = 0; i < ws->n; i++)
for(int j = 0; j < ws->n; j++)
gsl_matrix_set(evec_real, i, j, GSL_REAL(gsl_matrix_complex_get(ws->evec_complex, i, j)));
}
void eigensystem_symm(gsl_matrix *g, gsl_vector *eval, gsl_matrix *evec, workspace_t *ws)
{
gsl_matrix_memcpy(ws->stack[0], g);
int r = gsl_eigen_symmv (ws->stack[0], eval, evec, ws->work_symmv);
ERROR(r, "gsl_eigen_symmv failed!\n");
gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
}
// returns number of positive directions and matrix transforming TO diagonal basis
int diagonalize_symmetric_form(gsl_matrix *A, gsl_matrix *cob, workspace_t *ws)
{
gsl_matrix_memcpy(ws->stack[0], A);
int r = gsl_eigen_symmv (ws->stack[0], ws->eval_real, cob, ws->work_symmv);
ERROR(r, "gsl_eigen_symmv failed!\n");
gsl_eigen_symmv_sort(ws->eval_real, cob, GSL_EIGEN_SORT_VAL_ASC);
gsl_matrix_transpose(cob);
int positive = 0;
for(int i = 0; i < ws->n; i++) {
if(gsl_vector_get(ws->eval_real, i) > 0)
positive++;
for(int j = 0; j < ws->n; j++)
*gsl_matrix_ptr(cob, i, j) *= sqrt(fabs(gsl_vector_get(ws->eval_real, i)));
}
return positive;
// printf("Eigenvalues: %.10f, %.10f, %.10f\n", gsl_vector_get(ws->eval_real, 0), gsl_vector_get(ws->eval_real, 1), gsl_vector_get(ws->eval_real, 2));
// return 0;
}