#include "weyl.h" #include "queue.h" #include #include #include #define BIT(n) ((uint64_t)1 << (n)) typedef struct { weylid_t id; int position; } weylid_lookup_t; static int search(const void *key, const void *base, size_t nmem, size_t size, int (*compar) (const void *, const void *, void *), void *arg); static int compare_root_vectors(int rank, const int *x, const int *y); static int compare_root_vectors_qsort(const void *x, const void *y, void *arg); static int compare_weylid_lookup(const void *x, const void *y); static int lookup_id(weylid_t id, weylid_lookup_t *list, int len); static weylid_t multiply_generator(int s, weylid_t w, const int *simple, const int *mapping, int rank, int positive); static void reflect_root_vector(const int *cartan, int rank, int i, int *old, int *new); /***************** simple helper functions **********************************/ // glibc search function, but with user pointer and returning index (or -1 if not found) static int search (const void *key, const void *base, size_t nmemb, size_t size, int (*compar) (const void *, const void *, void *), void *arg) { size_t l, u, idx; const void *p; int comparison; l = 0; u = nmemb; while (l < u) { idx = (l + u) / 2; p = (void *) (((const char *) base) + (idx * size)); comparison = (*compar) (key, p, arg); if (comparison < 0) u = idx; else if (comparison > 0) l = idx + 1; else return idx; } return -1; } // maybe we want a different ordering here? static int compare_root_vectors(int rank, const int *x, const int *y) { for(int i = 0; i < rank; i++) if(x[i] != y[i]) return x[i] - y[i]; return 0; } static int compare_root_vectors_qsort(const void *x, const void *y, void *arg) { return compare_root_vectors(*((int*)arg), x, y); } static int compare_weylid(const void *x, const void *y) { weylid_t u = *((weylid_t*)x); weylid_t v = *((weylid_t*)y); return u > v ? 1 : u < v ? -1 : 0; } static int compare_weylid_lookup(const void *x, const void *y) { weylid_t u = ((weylid_lookup_t*)x)->id; weylid_t v = ((weylid_lookup_t*)y)->id; return u > v ? 1 : u < v ? -1 : 0; } static int lookup_id(weylid_t id, weylid_lookup_t *list, int len) { weylid_lookup_t key; key.id = id; weylid_lookup_t *p = (weylid_lookup_t*)bsearch(&key, list, len, sizeof(weylid_lookup_t), compare_weylid_lookup); return p->position; } static weylid_t multiply_generator(int s, weylid_t w, const int* simple, const int* mapping, int rank, int positive) { weylid_t sw = 0; for(int i = 0; i < positive; i++) { if(w & BIT(i)) if(mapping[i*rank+s] != -1) sw |= BIT(mapping[i*rank+s]); } if(w & BIT(simple[s])) return sw; else return sw | BIT(simple[s]); } static void reflect_root_vector(const int *cartan, int rank, int i, int *old, int *new) { memcpy(new, old, rank*sizeof(int)); for(int j = 0; j < rank; j++) new[i] -= cartan[i*rank + j]*old[j]; } /************* Weyl group infos ************************/ int weyl_rank(semisimple_type_t type) { int rank = 0; for(int i = 0; i < type.n; i++) rank += type.factors[i].rank; return rank; } int weyl_order(semisimple_type_t type) { int order = 1; for(int i = 0; i < type.n; i++) { switch(type.factors[i].series) { case 'A': for(int j = 1; j <= type.factors[i].rank + 1; j++) order *= j; break; case 'B': case 'C': for(int j = 1; j <= type.factors[i].rank; j++) order *= 2*j; break; case 'D': for(int j = 2; j <= type.factors[i].rank; j++) order *= 2*j; break; case 'E': if(type.factors[i].rank == 6) order *= 51840; else if(type.factors[i].rank == 7) order *= 2903040; else if(type.factors[i].rank == 8) order *= 696729600; else ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank); break; case 'F': ERROR(type.factors[i].rank != 4, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank); order *= 1152; break; case 'G': ERROR(type.factors[i].rank != 2, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank); order *= 12; break; default: ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank); } } return order; } int weyl_hyperplanes(semisimple_type_t type) { int hyperplanes = 0; for(int i = 0; i < type.n; i++) { switch(type.factors[i].series) { case 'A': hyperplanes += (type.factors[i].rank * (type.factors[i].rank + 1)) / 2; break; case 'B': case 'C': hyperplanes += type.factors[i].rank * type.factors[i].rank; break; case 'D': hyperplanes += type.factors[i].rank * (type.factors[i].rank - 1); break; case 'E': if(type.factors[i].rank == 6) hyperplanes += 36; else if(type.factors[i].rank == 7) hyperplanes += 63; else if(type.factors[i].rank == 8) hyperplanes += 120; else ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank); break; case 'F': ERROR(type.factors[i].rank != 4, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank); hyperplanes += 24; break; case 'G': ERROR(type.factors[i].rank != 2, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank); hyperplanes += 6; break; default: ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[i].series, type.factors[i].rank); } } return hyperplanes; } int weyl_opposition(semisimple_type_t type, int simple_root) { int offset = 0; int factor = 0; int r, iota_r; for(factor = 0; factor < type.n; factor++) if(simple_root < offset + type.factors[factor].rank) break; else offset += type.factors[factor].rank; r = simple_root - offset; switch(type.factors[factor].series) { case 'A': iota_r = type.factors[factor].rank - 1 - r; break; case 'B': case 'C': iota_r = r; break; case 'D': ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank); break; case 'E': ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank); break; case 'F': ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank); break; case 'G': ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank); break; default: ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[factor].series, type.factors[factor].rank); } return iota_r + offset; } void weyl_cartan_matrix(semisimple_type_t type, int *m) { int offset = 0; int rank = weyl_rank(type); int **A = (int**)malloc(rank*sizeof(int*)); memset(m, 0, rank*rank*sizeof(int)); for(int i = 0; i < rank; i++) m[i*rank+i] = 2; for(int k = 0; k < type.n; k++) { for(int i = 0; i < type.factors[k].rank; i++) // A is the submatrix corresponding to the current simple factor A[i] = &m[(i+offset)*rank + offset]; switch(type.factors[k].series) { case 'A': for(int i = 1; i < type.factors[k].rank; i++) { A[i][i-1] = -1; A[i-1][i] = -1; } break; case 'B': // not sure at all about the order of B and C if(type.factors[k].rank >= 2) { A[0][1] = -1; A[1][0] = -2; } for(int i = 2; i < type.factors[k].rank; i++) { A[i][i-1] = -1; A[i-1][i] = -1; } break; case 'C': if(type.factors[k].rank >= 2) { A[0][1] = -2; A[1][0] = -1; } for(int i = 2; i < type.factors[k].rank; i++) { A[i][i-1] = -1; A[i-1][i] = -1; } break; case 'D': ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank); break; case 'E': ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank); break; case 'F': ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank); break; case 'G': ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank); break; default: ERROR(1, "A Weyl group of type %c%d does not exist or is not implemented!\n", type.factors[k].series, type.factors[k].rank); } offset += type.factors[k].rank; } free(A); } /************ memory allocation ********************/ weylgroup_element_t *weyl_alloc(semisimple_type_t type) { int rank = weyl_rank(type); int order = weyl_order(type); int *left = (int*)malloc(rank*order*sizeof(int)); int *right = (int*)malloc(rank*order*sizeof(int)); weylgroup_element_t *group = (weylgroup_element_t*)malloc(order*sizeof(weylgroup_element_t)); for(int i = 0; i < order; i++) { group[i].left = &left[i*rank]; group[i].right = &right[i*rank]; } return group; } void weyl_free(weylgroup_element_t *x) { free(x[0].left); free(x[0].right); free(x); } void weyl_generate(semisimple_type_t type, weylgroup_element_t *group) { int rank, order, positive; queue_t queue; int current; int roots_known, elements, length_elements, nextids_count; int *cartan_matrix; int *root_vectors; int *vector; int *simple_roots; int *root_mapping; weylid_t *ids, *edges, *nextids; weylid_lookup_t *lookup; rank = weyl_rank(type); order = weyl_order(type); positive = weyl_hyperplanes(type); ERROR(positive > 64, "We can't handle root systems with more than 64 positive roots!\n"); cartan_matrix = (int*)malloc(rank*rank *sizeof(int)); root_vectors = (int*)malloc(2*positive*rank*sizeof(int)); vector = (int*)malloc(rank *sizeof(int)); root_mapping = (int*)malloc(positive*rank *sizeof(int)); simple_roots = (int*)malloc(rank *sizeof(int)); ids = (weylid_t*)malloc(order *sizeof(weylid_t)); edges = (weylid_t*)malloc(rank*order *sizeof(weylid_t)); nextids = (weylid_t*)malloc(rank*order *sizeof(weylid_t)); lookup = (weylid_lookup_t*)malloc(order *sizeof(weylid_lookup_t)); weyl_cartan_matrix(type, cartan_matrix); // enumerate roots memset(root_vectors, 0, 2*positive*rank*sizeof(int)); // first the simple roots queue_init(&queue); for(int i = 0; i < rank; i++) { root_vectors[rank*i + i] = 1; queue_put(&queue, i); } // and then we get all others by reflecting roots_known = rank; while((current = queue_get(&queue)) != -1) { for(int i = 0; i < rank; i++) { reflect_root_vector(cartan_matrix, rank, i, &root_vectors[rank*current], vector); int j; for(j = 0; j < roots_known; j++) if(compare_root_vectors(rank, &root_vectors[rank*j], vector) == 0) break; if(j == roots_known) { memcpy(&root_vectors[rank*roots_known], vector, rank*sizeof(int)); queue_put(&queue, roots_known); roots_known++; } } } ERROR(roots_known != 2*positive, "Number of roots does not match!\n") // sort roots and restrict to positives qsort_r(root_vectors, 2*positive, rank*sizeof(int), compare_root_vectors_qsort, &rank); memcpy(root_vectors, &root_vectors[positive*rank], positive*rank*sizeof(int)); for(int i = 0; i < positive; i++) { for(int j = 0; j < rank; j++) { reflect_root_vector(cartan_matrix, rank, j, &root_vectors[rank*i], vector); root_mapping[i*rank+j] = search(vector, root_vectors, positive, rank*sizeof(int), compare_root_vectors_qsort, &rank); } } // where in the list are the simple roots? for(int i = 0; i < rank; i++) { memset(vector, 0, rank*sizeof(int)); vector[i] = 1; simple_roots[i] = search(vector, root_vectors, positive, rank*sizeof(int), compare_root_vectors_qsort, &rank); } // enumerate weyl group elements using difference sets nextids[0] = 0; nextids_count = 1; elements = 0; for(int len = 0; len <= positive; len++) { length_elements = 0; // find unique ids in edges added in the last iteration qsort(nextids, nextids_count, sizeof(weylid_t), compare_weylid); for(int i = 0; i < nextids_count; i++) if(i == 0 || nextids[i] != nextids[i-1]) ids[elements + length_elements++] = nextids[i]; // add new edges nextids_count = 0; for(int i = elements; i < elements + length_elements; i++) for(int j = 0; j < rank; j++) { edges[i*rank+j] = multiply_generator(j, ids[i], simple_roots, root_mapping, rank, positive); if(!(ids[i] & BIT(simple_roots[j]))) // the new element is longer then the old one nextids[nextids_count++] = edges[i*rank+j]; } elements += length_elements; } // translate the ids to list positions (i.e. local continuous ids) for(int i = 0; i < order; i++) { lookup[i].id = ids[i]; lookup[i].position = i; } qsort(lookup, order, sizeof(weylid_lookup_t), compare_weylid_lookup); for(int i = 0; i < order; i++) { group[i].id = ids[i]; for(int j = 0; j < rank; j++) group[i].left[j] = lookup_id(edges[i*rank+j], lookup, order); } free(cartan_matrix); free(root_vectors); free(vector); free(root_mapping); free(simple_roots); free(ids); free(edges); free(nextids); free(lookup); }