#include "weyl.h" #include "queue.h" #include #include #include #define BIT(n) ((uint64_t)1 << (n)) typedef struct { weylid_t id; int position; } weylid_lookup_t; static void generate_left_and_ids(semisimple_type_t type, weylgroup_element_t *group); static int search(const void *key, const void *base, size_t nmem, size_t size, int (*compar) (const void *, const void *, void *), void *arg); static int compare_root_vectors(int rank, const int *x, const int *y); static int compare_root_vectors_qsort(const void *x, const void *y, void *arg); static int compare_weylid(const void *x, const void *y); static int compare_weylid_lookup(const void *x, const void *y); static int lookup_id(weylid_t id, weylid_lookup_t *list, int len); static weylid_t multiply_generator(int s, weylid_t w, const int *simple, const int *mapping, int rank, int positive); static void reflect_root_vector(const int *cartan, int rank, int i, int *old, int *new); static weylgroup_element_t* apply_word(int *word, int len, weylgroup_element_t *current); static weylgroup_element_t* apply_word_reverse(int *word, int len, weylgroup_element_t *current); /******** generate_left_and_ids and a pile of helper functions **************/ static void generate_left_and_ids(semisimple_type_t type, weylgroup_element_t *group) { int rank = weyl_rank(type); int order = weyl_order(type); int positive = weyl_positive(type); queue_t queue; int current; int roots_known, elements, length_elements, nextids_count; int *cartan_matrix; int *root_vectors; int *vector; int *simple_roots; int *root_mapping; weylid_t *ids, *edges, *nextids; weylid_lookup_t *lookup; // allocate temporary stuff cartan_matrix = (int*)malloc(rank*rank *sizeof(int)); root_vectors = (int*)malloc(2*positive*rank*sizeof(int)); vector = (int*)malloc(rank *sizeof(int)); root_mapping = (int*)malloc(positive*rank *sizeof(int)); simple_roots = (int*)malloc(rank *sizeof(int)); ids = (weylid_t*)malloc(order *sizeof(weylid_t)); edges = (weylid_t*)malloc(rank*order *sizeof(weylid_t)); nextids = (weylid_t*)malloc(rank*order *sizeof(weylid_t)); lookup = (weylid_lookup_t*)malloc(order *sizeof(weylid_lookup_t)); // get all information on the cartan type LOG("Get Cartan matrix.\n"); weyl_cartan_matrix(type, cartan_matrix); // enumerate roots, first the simple ones, then all others by reflecting LOG("Enumerate roots.\n"); memset(root_vectors, 0, 2*positive*rank*sizeof(int)); roots_known = 0; queue_init(&queue); for(int i = 0; i < rank; i++) { root_vectors[rank*i + i] = 1; // (r_i)_j = delta_ij queue_put(&queue, i); roots_known++; } while((current = queue_get(&queue)) != -1) { for(int i = 0; i < rank; i++) { reflect_root_vector(cartan_matrix, rank, i, &root_vectors[rank*current], vector); int j; for(j = 0; j < roots_known; j++) if(compare_root_vectors(rank, &root_vectors[rank*j], vector) == 0) break; if(j == roots_known) { memcpy(&root_vectors[rank*roots_known], vector, rank*sizeof(int)); queue_put(&queue, roots_known); roots_known++; } } } ERROR(roots_known != 2*positive, "Number of roots does not match!\n"); // sort roots and restrict to positives LOG("Sort roots.\n"); qsort_r(root_vectors, 2*positive, rank*sizeof(int), compare_root_vectors_qsort, &rank); memcpy(root_vectors, &root_vectors[positive*rank], positive*rank*sizeof(int)); // this just copies the second part of the list onto the first; source and destination are disjoint! // generate root_mapping, which gives the action of root reflections on positive roots (-1 if result is not a positive root) LOG("Compute root reflections.\n"); for(int i = 0; i < positive; i++) { for(int j = 0; j < rank; j++) { reflect_root_vector(cartan_matrix, rank, j, &root_vectors[rank*i], vector); root_mapping[i*rank+j] = search(vector, root_vectors, positive, rank*sizeof(int), compare_root_vectors_qsort, &rank); } } // find simple roots in the list LOG("Find simple roots.\n"); for(int i = 0; i < rank; i++) { memset(vector, 0, rank*sizeof(int)); vector[i] = 1; simple_roots[i] = search(vector, root_vectors, positive, rank*sizeof(int), compare_root_vectors_qsort, &rank); } // enumerate weyl group elements using difference sets LOG("Enumerate Weyl group elements.\n"); nextids[0] = 0; nextids_count = 1; elements = 0; for(int len = 0; len <= positive; len++) { length_elements = 0; // find unique ids in edges added in the last iteration qsort(nextids, nextids_count, sizeof(weylid_t), compare_weylid); for(int i = 0; i < nextids_count; i++) if(i == 0 || nextids[i] != nextids[i-1]) ids[elements + length_elements++] = nextids[i]; // add new edges nextids_count = 0; for(int i = elements; i < elements + length_elements; i++) for(int j = 0; j < rank; j++) { edges[i*rank+j] = multiply_generator(j, ids[i], simple_roots, root_mapping, rank, positive); if(!(ids[i] & BIT(simple_roots[j]))) // the new element is longer then the old one nextids[nextids_count++] = edges[i*rank+j]; } elements += length_elements; } // translate the ids to list positions (i.e. local continuous ids) LOG("Reorder Weyl group elements.\n"); for(int i = 0; i < order; i++) { lookup[i].id = ids[i]; lookup[i].position = i; } qsort(lookup, order, sizeof(weylid_lookup_t), compare_weylid_lookup); // fill in results LOG("Compute left multiplication.\n"); for(int i = 0; i < order; i++) { group[i].id = ids[i]; for(int j = 0; j < rank; j++) group[i].left[j] = group + lookup_id(edges[i*rank+j], lookup, order); } // free temporary stuff free(cartan_matrix); free(root_vectors); free(vector); free(root_mapping); free(simple_roots); free(ids); free(edges); free(nextids); free(lookup); } // glibc search function, but with user pointer and returning index (or -1 if not found) static int search (const void *key, const void *base, size_t nmemb, size_t size, int (*compar) (const void *, const void *, void *), void *arg) { size_t l, u, idx; const void *p; int comparison; l = 0; u = nmemb; while (l < u) { idx = (l + u) / 2; p = (void *) (((const char *) base) + (idx * size)); comparison = (*compar) (key, p, arg); if (comparison < 0) u = idx; else if (comparison > 0) l = idx + 1; else return idx; } return -1; } // maybe we want a different ordering here? static int compare_root_vectors(int rank, const int *x, const int *y) { for(int i = 0; i < rank; i++) if(x[i] != y[i]) return x[i] - y[i]; return 0; } static int compare_root_vectors_qsort(const void *x, const void *y, void *arg) { return compare_root_vectors(*((int*)arg), x, y); } static int compare_weylid(const void *x, const void *y) { weylid_t u = *((weylid_t*)x); weylid_t v = *((weylid_t*)y); return u > v ? 1 : u < v ? -1 : 0; } static int compare_weylid_lookup(const void *x, const void *y) { weylid_t u = ((weylid_lookup_t*)x)->id; weylid_t v = ((weylid_lookup_t*)y)->id; return u > v ? 1 : u < v ? -1 : 0; } static int lookup_id(weylid_t id, weylid_lookup_t *list, int len) { weylid_lookup_t key; key.id = id; weylid_lookup_t *p = (weylid_lookup_t*)bsearch(&key, list, len, sizeof(weylid_lookup_t), compare_weylid_lookup); return p->position; } static weylid_t multiply_generator(int s, weylid_t w, const int* simple, const int* mapping, int rank, int positive) { weylid_t sw = 0; for(int i = 0; i < positive; i++) { if(w & BIT(i)) if(mapping[i*rank+s] != -1) sw |= BIT(mapping[i*rank+s]); } if(w & BIT(simple[s])) return sw; else return sw | BIT(simple[s]); } static void reflect_root_vector(const int *cartan, int rank, int i, int *old, int *new) { memcpy(new, old, rank*sizeof(int)); for(int j = 0; j < rank; j++) new[i] -= cartan[i*rank + j]*old[j]; } /************* Weyl group infos ************************/ static int weyl_exists(simple_type_t type) { if(type.series < 'A' || type.series > 'G' || type.rank < 1 || type.series == 'B' && type.rank < 2 || type.series == 'C' && type.rank < 2 || type.series == 'D' && type.rank < 3 || type.series == 'E' && type.rank != 6 && type.rank != 7 && type.rank != 8 || type.series == 'F' && type.rank != 4 || type.series == 'G' && type.rank != 2) return 0; else return 1; } int weyl_rank(semisimple_type_t type) { int rank = 0; for(int i = 0; i < type.n; i++) rank += type.factors[i].rank; return rank; } int weyl_order(semisimple_type_t type) { int order = 1; for(int i = 0; i < type.n; i++) { ERROR(!weyl_exists(type.factors[i]), "A Weyl group of type %c%d does not exist!\n", type.factors[i].series, type.factors[i].rank); switch(type.factors[i].series) { case 'A': for(int j = 1; j <= type.factors[i].rank + 1; j++) order *= j; break; case 'B': case 'C': for(int j = 1; j <= type.factors[i].rank; j++) order *= 2*j; break; case 'D': for(int j = 2; j <= type.factors[i].rank; j++) order *= 2*j; break; case 'E': if(type.factors[i].rank == 6) order *= 51840; else if(type.factors[i].rank == 7) order *= 2903040; else if(type.factors[i].rank == 8) order *= 696729600; break; case 'F': order *= 1152; break; case 'G': order *= 12; break; } } return order; } int weyl_positive(semisimple_type_t type) { int positive = 0; for(int i = 0; i < type.n; i++) { ERROR(!weyl_exists(type.factors[i]), "A Weyl group of type %c%d does not exist!\n", type.factors[i].series, type.factors[i].rank); switch(type.factors[i].series) { case 'A': positive += (type.factors[i].rank * (type.factors[i].rank + 1)) / 2; break; case 'B': case 'C': positive += type.factors[i].rank * type.factors[i].rank; break; case 'D': positive += type.factors[i].rank * (type.factors[i].rank - 1); break; case 'E': if(type.factors[i].rank == 6) positive += 36; else if(type.factors[i].rank == 7) positive += 63; else if(type.factors[i].rank == 8) positive += 120; break; case 'F': positive += 24; break; case 'G': positive += 6; break; } } return positive; } int weyl_opposition(semisimple_type_t type, int simple_root) { int offset = 0; int factor = 0; int r, iota_r; for(factor = 0; factor < type.n; factor++) if(simple_root < offset + type.factors[factor].rank) break; else offset += type.factors[factor].rank; r = simple_root - offset; ERROR(!weyl_exists(type.factors[factor]), "A Weyl group of type %c%d does not exist!\n", type.factors[factor].series, type.factors[factor].rank); switch(type.factors[factor].series) { case 'B': case 'C': case 'F': case 'G': iota_r = r; break; case 'A': iota_r = type.factors[factor].rank - 1 - r; break; case 'D': if(type.factors[factor].rank % 2 == 0) iota_r = r; else iota_r = r == 0 ? 1 : r == 1 ? 0 : r; break; case 'E': if(type.factors[factor].rank == 6) iota_r = r; else iota_r = r == 3 || r == 4 ? r : 5 - r; break; } return iota_r + offset; } void weyl_cartan_matrix(semisimple_type_t type, int *m) { int offset = 0; int rank = weyl_rank(type); int **A = (int**)malloc(rank*sizeof(int*)); memset(m, 0, rank*rank*sizeof(int)); for(int i = 0; i < rank; i++) m[i*rank+i] = 2; for(int k = 0; k < type.n; k++) { ERROR(!weyl_exists(type.factors[k]), "A Weyl group of type %c%d does not exist!\n", type.factors[k].series, type.factors[k].rank); for(int i = 0; i < type.factors[k].rank; i++) // A is the submatrix corresponding to the current simple factor A[i] = &m[(i+offset)*rank + offset]; for(int i = 1; i < type.factors[k].rank; i++) { A[i][i-1] = -1; A[i-1][i] = -1; } switch(type.factors[k].series) { case 'A': break; case 'B': A[0][1] = -2; break; case 'C': A[1][0] = -2; break; case 'D': A[0][1] = A[1][0] = 0; A[0][2] = A[2][0] = -1; break; case 'E': A[1][2] = A[2][1] = 0; A[1][3] = A[3][1] = -1; break; case 'F': A[3][2] = -2; break; case 'G': A[1][0] = -3; break; } offset += type.factors[k].rank; } free(A); } /************ weyl_generate etc. ********************/ static weylgroup_element_t* apply_word(int *word, int len, weylgroup_element_t *current) { for(int k = len - 1; k >= 0; k--) // apply group element from right to left current = current->left[word[k]]; return current; } static weylgroup_element_t* apply_word_reverse(int *word, int len, weylgroup_element_t *current) { for(int k = 0; k < len; k++) // apply group element from left to right (i.e. apply inverse) current = current->left[word[k]]; return current; } weylgroup_t *weyl_generate(semisimple_type_t type) { int rank = weyl_rank(type); int order = weyl_order(type); int positive = weyl_positive(type); ERROR(positive > 64, "We can't handle root systems with more than 64 positive roots!\n"); // allocate result weylgroup_element_t *group = (weylgroup_element_t*)malloc(order*sizeof(weylgroup_element_t)); weylgroup_t *result = malloc(sizeof(weylgroup_t)); result->type = type; result->elements = group; result->lists = (weylgroup_element_t**)malloc(2*order*rank*sizeof(weylgroup_element_t*)); for(int i = 0; i < order; i++) { group[i].left = result->lists + 2*i*rank; group[i].right = result->lists + (2*i+1)*rank; group[i].coset = (doublecoset_t*)0; } // the main part LOG("Start generating Weyl group.\n"); generate_left_and_ids(type, group); // word length is just the number of 1s in the binary id LOG("Find word lengths.\n"); for(int i = 0; i < order; i++) { group[i].wordlength = 0; for(int j = 0; j < positive; j++) if(group[i].id & BIT(j)) group[i].wordlength++; } // allocate letters int total_wordlength = 0; for(int i = 0; i < order; i++) total_wordlength += group[i].wordlength; result->letters = (int*)malloc(total_wordlength*sizeof(int)); total_wordlength = 0; for(int i = 0; i < order; i++) { group[i].word = result->letters + total_wordlength; total_wordlength += group[i].wordlength; } // find shortest words (using that the elements are already ordered by word length) LOG("Find shortest words.\n"); memset(result->letters, -1, total_wordlength*sizeof(int)); for(int i = 0; i < order - 1; i++) { weylgroup_element_t *this = &group[i]; for(int j = 0; j < rank; j++) { weylgroup_element_t *that = group[i].left[j]; if(that->wordlength > this->wordlength && that->word[0] == -1) { memcpy(that->word + 1, this->word, this->wordlength*sizeof(int)); that->word[0] = j; } } } // generate right edges LOG("Compute right multiplication.\n"); for(int i = 0; i < order; i++) for(int j = 0; j < rank; j++) group[i].right[j] = apply_word(group[i].word, group[i].wordlength, group[0].left[j]); // find opposites LOG("Find opposites.\n"); weylgroup_element_t *longest = &group[order-1]; for(int i = 0; i < order; i++) group[i].opposite = apply_word(longest->word, longest->wordlength, &group[i]); // check for root reflections LOG("Find root reflections.\n"); for(int i = 0; i < order; i++) group[i].is_root_reflection = 0; for(int i = 0; i < order; i++) for(int j = 0; j < rank; j++) // we want to calculate word^{-1} * j * word; this is a root reflection apply_word_reverse(group[i].word, group[i].wordlength, group[i].left[j]) -> is_root_reflection = 1; return result; } void weyl_destroy(weylgroup_t *group) { free(group->elements); free(group->lists); free(group->letters); free(group); } doublequotient_t *weyl_generate_bruhat(semisimple_type_t type, int left_invariance, int right_invariance) { int rank = weyl_rank(type); int order = weyl_order(type); int positive = weyl_positive(type); int count; int is_minimum, is_maximum; weylgroup_t *wgroup = weyl_generate(type); weylgroup_element_t *group = wgroup->elements; doublecoset_t *cosets; for(int i = 0; i < rank; i++) { int oppi = weyl_opposition(type, i); if(left_invariance & BIT(i) && !(left_invariance & BIT(oppi)) || left_invariance & BIT(oppi) && !(left_invariance & BIT(i))) ERROR(1, "The specified left invariance is not invariant under the opposition involution!\n"); } doublequotient_t *result = (doublequotient_t*)malloc(sizeof(doublequotient_t)); result->type = type; result->left_invariance = left_invariance; result->right_invariance = right_invariance; result->group = wgroup->elements; result->grouplists = wgroup->lists; result->groupletters = wgroup->letters; free(wgroup); // dissolved in result and not needed anymore // count cosets by finding the minimum length element in every coset LOG("Count cosets.\n"); count = 0; for(int i = 0; i < order; i++) { is_minimum = 1; for(int j = 0; j < rank; j++) if(left_invariance & BIT(j) && group[i].left[j]->wordlength < group[i].wordlength || right_invariance & BIT(j) && group[i].right[j]->wordlength < group[i].wordlength) is_minimum = 0; if(is_minimum) count++; } result->count = count; // alloc more stuff cosets = result->cosets = (doublecoset_t*)malloc(count*sizeof(doublecoset_t)); for(int i = 0; i < count; i++) { cosets[i].bruhat_lower = cosets[i].bruhat_higher = (doublecoset_list_t*)0; } result->lists = (doublecoset_list_t*)malloc(2*count*positive*sizeof(doublecoset_list_t)); // 2 times, for bruhat lower and higher // find minima (basically same code as above) LOG("Find minimal length elements in cosets.\n"); count = 0; for(int i = 0; i < order; i++) { is_minimum = 1; for(int j = 0; j < rank; j++) if(left_invariance & BIT(j) && group[i].left[j]->wordlength < group[i].wordlength || right_invariance & BIT(j) && group[i].right[j]->wordlength < group[i].wordlength) is_minimum = 0; if(is_minimum) { cosets[count].min = &group[i]; group[i].coset = &cosets[count]; count++; } } // generate quotient map LOG("Generate quotient map.\n"); for(int i = 0; i < order; i++) { for(int j = 0; j < rank; j++) { if(left_invariance & BIT(j) && group[i].left[j]->wordlength > group[i].wordlength) group[i].left[j]->coset = group[i].coset; if(right_invariance & BIT(j) && group[i].right[j]->wordlength > group[i].wordlength) group[i].right[j]->coset = group[i].coset; } } // find maxima LOG("Find maximal length elements.\n"); for(int i = 0; i < order; i++) { is_maximum = 1; for(int j = 0; j < rank; j++) if(left_invariance & BIT(j) && group[i].left[j]->wordlength > group[i].wordlength || right_invariance & BIT(j) && group[i].right[j]->wordlength > group[i].wordlength) is_maximum = 0; if(is_maximum) { group[i].coset->max = &group[i]; } } // opposites LOG("Find opposites.\n"); for(int i = 0; i < count; i++) cosets[i].opposite = cosets[i].min->opposite->coset; // bruhat order LOG("Find bruhat order.\n"); int edgecount = 0; for(int i = 0; i < order; i++) { if(group[i].is_root_reflection) { for(int j = 0; j < count; j++) { weylgroup_element_t *this = cosets[j].min; weylgroup_element_t *that = apply_word(group[i].word, group[i].wordlength, cosets[j].min); if(this->wordlength > that->wordlength) { // this is higher in bruhat order than that doublecoset_list_t *new = &result->lists[edgecount++]; new->next = this->coset->bruhat_lower; this->coset->bruhat_lower = new; new->to = that->coset; } } } } // transitive reduction LOG("Perform transitive reduction.\n"); doublecoset_t *offset = &cosets[0]; doublecoset_t *origin; doublecoset_list_t *current; doublecoset_list_t *prev; queue_t queue; int cur; int *seen = malloc(count*sizeof(int)); for(int i = 0; i < count; i++) { memset(seen, 0, count*sizeof(int)); queue_init(&queue); for(int len = 1; len <= cosets[i].min->wordlength; len++) { // remove all edges originating from i of length len which connect to something already seen using shorter edges origin = &cosets[i]; prev = (doublecoset_list_t*)0; for(current = origin->bruhat_lower; current; current = current->next) { if(origin->min->wordlength - current->to->min->wordlength != len) { prev = current; } else if(seen[current->to - offset]) { if(prev) prev->next = current->next; else origin->bruhat_lower = current->next; } else { prev = current; seen[current->to - offset] = 1; queue_put(&queue, current->to - offset); } } // see which nodes we can reach using only edges up to length len, mark them as seen while((cur = queue_get(&queue)) != -1) { current = (cur + offset)->bruhat_lower; for(current = (cur+offset)->bruhat_lower; current; current = current->next) { if(!seen[current->to - offset]) { seen[current->to - offset] = 1; queue_put(&queue, current->to - offset); } } } } } free(seen); // reverse bruhat order LOG("Revert bruhat order.\n"); for(int i = 0; i < count; i++) { for(current = cosets[i].bruhat_lower; current; current = current->next) { doublecoset_list_t *new = &result->lists[edgecount++]; new->to = &cosets[i]; new->next = current->to->bruhat_higher; current->to->bruhat_higher = new; } } // sort opposites and rewrite everything LOG("Sort opposites.\n"); int *old2newindices = (int*)malloc(count*sizeof(int)); int *new2oldindices = (int*)malloc(count*sizeof(int)); doublecoset_t *oldcosets = (doublecoset_t*)malloc(count*sizeof(doublecoset_t)); memcpy(oldcosets, cosets, count*sizeof(doublecoset_t)); int j = 0; for(int i = 0; i < count; i++) if(&cosets[i] < cosets[i].opposite) { old2newindices[i] = j; old2newindices[cosets[i].opposite - cosets] = count-1-j; j++; } for(int i = 0; i < count; i++) if(i == cosets[i].opposite - cosets) old2newindices[i] = j++; for(int i = 0; i < count; i++) new2oldindices[old2newindices[i]] = i; for(int i = 0; i < count; i++) { cosets[i].min = oldcosets[new2oldindices[i]].min; cosets[i].max = oldcosets[new2oldindices[i]].max; cosets[i].opposite = old2newindices[oldcosets[new2oldindices[i]].opposite - cosets] + cosets; cosets[i].bruhat_lower = oldcosets[new2oldindices[i]].bruhat_lower; cosets[i].bruhat_higher = oldcosets[new2oldindices[i]].bruhat_higher; for(current = cosets[i].bruhat_lower; current; current = current -> next) current->to = old2newindices[current->to - cosets] + cosets; for(current = cosets[i].bruhat_higher; current; current = current -> next) current->to = old2newindices[current->to - cosets] + cosets; } for(int i = 0; i < order; i++) group[i].coset = old2newindices[group[i].coset - cosets] + cosets; free(old2newindices); free(new2oldindices); free(oldcosets); return result; } void weyl_destroy_bruhat(doublequotient_t *dq) { free(dq->group); free(dq->grouplists); free(dq->groupletters); free(dq->cosets); free(dq->lists); free(dq); }