new flexible search and iterator implementation

This commit is contained in:
Florian Stecker 2024-02-07 00:24:14 -05:00
parent bbc1970bbe
commit 4397a02c4e
2 changed files with 207 additions and 175 deletions

View File

@ -1,7 +1,8 @@
use std::convert::identity;
use std::rc::Rc;
use std::ops::{Deref, RangeBounds};
use std::ops::{Deref, RangeBounds, Bound};
use crate::btrfs_structs::{Leaf, Key, Item, InteriorNode, Node, ParseError, ParseBin, Value, Superblock, ItemType};
use crate::btrfs_structs::{Leaf, Key, Item, InteriorNode, Node, ParseError, ParseBin, Value, Superblock, ItemType, ZERO_KEY, DirItem};
use crate::addrmap::{node_at_log, LogToPhys, AddressMap};
/// represents a B-Tree inside a filesystem image. Can be used to look up keys,
@ -50,32 +51,40 @@ impl Leaf {
.map(|x|x.clone())
}
pub fn find_key_or_previous(&self, key: Key) -> Option<Item> {
pub fn find_key_or_previous(&self, key: Key) -> Option<usize> {
self.items
.iter()
.take_while(|x|x.key <= key)
.enumerate()
.last()
.map(|x|x.clone())
.map(|x|x.0)
}
}
impl InteriorNode {
pub fn find_key_or_previous(&self, key: Key) -> Option<u64> {
/// Return the index of the last child which has key at most `key`. This is the
/// branch which contains `key` if it exists. Returns `None` if all children are greater than
/// `key`, which guarantees that `key` is not among the descendants of `self`.
pub fn find_key_or_previous(&self, key: Key) -> Option<usize> {
self.children
.iter()
.take_while(|x|x.key <= key)
.enumerate()
.last()
.map(|x|x.ptr)
.map(|x|x.0)
}
}
/// Recursively traverse a tree to find a key, given they key and logical address
/// of the tree root. Internal function, `Tree::find_key` is the public interface.
fn find_key_in_node<T: LogToPhys>(image: &[u8], addr: &T, root_addr_log: u64, key: Key) -> Result<Item, ParseError> {
let node = Node::parse(node_at_log(image, addr, root_addr_log)?)?;
match node {
Node::Interior(interior_node) => {
let next_node_log = interior_node.find_key_or_previous(key).unwrap();
let next_node_index = interior_node.find_key_or_previous(key).unwrap();
let next_node_log = interior_node.children[next_node_index].ptr;
find_key_in_node(image, addr, next_node_log, key)
},
Node::Leaf(leaf) => {
@ -96,202 +105,223 @@ impl Tree<'_> {
/***** iterator *****/
pub struct RangeIter<'a, R: RangeBounds<Key>, F: Fn(Key) -> Key = fn(Key) -> Key> {
tree: &'a Tree<'a>,
pub struct RangeIter<'a, 'b> {
tree: &'b Tree<'a>,
// path to the last returned item
nodes: Vec<InteriorNode>,
leaf: Option<Box<Leaf>>,
indices: Vec<usize>,
bounds: R,
skip_fn: F,
start: Bound<Key>,
end: Bound<Key>,
forward_skip_fn: Box<dyn Fn(Key) -> Key>,
backward_skip_fn: Box<dyn Fn(Key) -> Key>,
}
impl Tree<'_> {
pub fn iter<'a>(&'a self) -> RangeIter<'a> {
self.range(None, None)
}
pub fn range<'a>(&'a self, lower: Option<Key>, upper: Option<Key>) -> RangeIter<'a> {
RangeIter {
tree: self,
nodes: Vec::new(),
leaf: None,
indices: Vec::new(), // in nodes and leaf
lower_limit: lower,
upper_limit: upper,
skip_fn: |x|x
}
}
pub fn range_id<'a>(&'a self, id: u64) -> RangeIter<'a> {
if id == u64::MAX {
self.range(
Some(Key::new(id, ItemType::Invalid, 0)),
None
)
} else {
self.range(
Some(Key::new(id, ItemType::Invalid, 0)),
Some(Key::new(id+1, ItemType::Invalid, 0))
)
}
}
/// given a tree, a range of indices, and two "skip functions", produces a double
impl<'a> Tree<'a> {
/// Given a tree, a range of indices, and two "skip functions", produces a double
/// ended iterator which iterates through the keys contained in the range, in ascending
/// or descending order.
/// the skip functions are ignored for now, but are intended as an optimization:
///
/// The skip functions are ignored for now, but are intended as an optimization:
/// after a key `k` was returned by the iterator (or the reverse iterator), all keys
/// strictly lower than `forward_skip_fn(k)` are skipped (resp. all keys strictly above
/// `backward_skip_fn` are skipped.
pub fn range_with_skip<'a, R, F>(&'a self, range: R, forward_skip_fn: F, backward_skip_fn: F) -> RangeIter<'a, F>
/// `backward_skip_fn(k)` are skipped.
///
/// If `forward_skip_fn` and `backward_skip_fn` are the identity, nothing is skipped
pub fn range_with_skip<'b, R, F1, F2>(&'b self, range: R, forward_skip_fn: F1, backward_skip_fn: F2) -> RangeIter<'a, 'b>
where
R: RangeBounds<Key>,
F: Fn(Key) -> Key {
F1: Fn(Key) -> Key + 'static,
F2: Fn(Key) -> Key + 'static {
RangeIter {
tree: self,
nodes: Vec::new(),
leaf: None,
indices: Vec::new(),
start: range.start_bound().cloned(),
end: range.end_bound().cloned(),
forward_skip_fn: Box::new(forward_skip_fn),
backward_skip_fn: Box::new(backward_skip_fn),
}
}
pub fn range<'b, R: RangeBounds<Key>>(&'b self, range: R) -> RangeIter<'a, 'b> {
RangeIter {
tree: self,
start: range.start_bound().cloned(),
end: range.end_bound().cloned(),
forward_skip_fn: Box::new(identity),
backward_skip_fn: Box::new(identity),
}
}
pub fn iter<'b>(&'b self) -> RangeIter<'a, 'b> {
RangeIter {
tree: self,
start: Bound::Unbounded,
end: Bound::Unbounded,
forward_skip_fn: Box::new(identity),
backward_skip_fn: Box::new(identity),
}
}
}
impl<F: Fn(Key) -> Key> RangeIter<'_, F> {
fn move_down_and_get_first_item(&mut self, mut node_addr: u64) -> Option<Item> {
loop {
let node = Node::parse(node_at_log(self.tree.image, self.tree.addr_map.deref(), node_addr).ok()?).ok()?;
match node {
Node::Interior(int_node) => {
node_addr = int_node.children.first()?.ptr;
self.nodes.push(int_node);
self.indices.push(0);
},
Node::Leaf(leaf_node) => {
let result = leaf_node.items.first()?.clone();
self.leaf = Some(Box::new(leaf_node));
self.indices.push(0);
return Some(result);
},
}
}
#[derive(Debug,PartialEq,Eq,Clone,Copy)]
enum FindKeyMode {LT, GT, GE, LE}
fn get_first_item(tree: &Tree, addr: u64) -> Result<Item, ParseError> {
let node_data = node_at_log(tree.image, tree.addr_map.deref(), addr)?;
match Node::parse(node_data)? {
Node::Interior(intnode) => {
get_first_item(tree, intnode.children[0].ptr)
},
Node::Leaf(leafnode) => {
Ok(leafnode.items[0].clone())
},
}
}
fn move_down_and_get_item_or_previous(&mut self, mut node_addr: u64, key: Key) -> Option<Item> {
loop {
let node = Node::parse(node_at_log(self.tree.image, self.tree.addr_map.deref(), node_addr).ok()?).ok()?;
fn get_last_item(tree: &Tree, addr: u64) -> Result<Item, ParseError> {
let node_data = node_at_log(tree.image, tree.addr_map.deref(), addr)?;
match Node::parse(node_data)? {
Node::Interior(intnode) => {
get_last_item(tree, intnode.children.last().unwrap().ptr)
},
Node::Leaf(leafnode) => {
Ok(leafnode.items.last().unwrap().clone())
},
}
}
match node {
Node::Interior(int_node) => {
let (i, new_node_ptr) = int_node
.children
.iter()
.enumerate()
.take_while(|(_,bp)|bp.key <= key)
.last()?;
/// Try to find the item with key `key` if it exists in the tree, and return
/// the "closest" match. The exact meaning of "closest" is given by the `mode` argument:
/// If `mode` is `LT`/`GT`/`GE`/`LE`, return the item with the greatest / least / greatest / least
/// key less than / greater than / greater or equal to / less or equal to `key`.
fn find_closest_key(tree: &Tree, key: Key, mode: FindKeyMode) -> Result<Option<Item>, ParseError> {
node_addr = new_node_ptr.ptr;
self.nodes.push(int_node);
self.indices.push(i);
},
Node::Leaf(leaf_node) => {
let (i, result) = leaf_node
.items
.iter()
.enumerate()
.take_while(|(_,item)|item.key <= key)
.last()?;
// in some cases, this task can't be accomplished by a single traversal
// but we might have to go back up the tree; this state allows to quickly go back to the right node
let mut prev: Option<u64> = None;
let mut next: Option<u64> = None;
let result_cloned = result.clone();
self.leaf = Some(Box::new(leaf_node));
self.indices.push(i);
return Some(result_cloned);
},
}
let mut node_data = node_at_log(tree.image, tree.addr_map.deref(), tree.root_addr_log)?;
loop {
match Node::parse(node_data)? {
Node::Interior(intnode) => {
match intnode.find_key_or_previous(key) {
Some(idx) => {
if let Some(kp) = (idx > 0).then(|| intnode.children.get(idx-1)).flatten() {
prev = Some(kp.ptr);
}
if let Some(kp) = intnode.children.get(idx+1) {
next = Some(kp.ptr);
}
node_data = node_at_log(tree.image, tree.addr_map.deref(), intnode.children[idx].ptr)?;
},
None => {
// this can only happen if every key in the current node is `> key`
// which really should only happen if we're in the root node, as otherwise
// we wouldn't have descended into this branch; so assume every key in the
// tree is above `> key`.
if mode == FindKeyMode::LT || mode == FindKeyMode::LE {
return Ok(None);
} else {
// return the first item in tree; we are an interior node so we really should have
// at least one child
let addr = intnode.children[0].ptr;
return Ok(Some(get_first_item(tree, addr)?));
}
}
}
},
Node::Leaf(leafnode) => {
match leafnode.find_key_or_previous(key) {
Some(idx) => {
// the standard case, we found a key `k` with the guarantee that `k <= key`
let Item {key: k, value: v} = leafnode.items[idx].clone();
if mode == FindKeyMode::LE || mode == FindKeyMode::LT && k < key || mode == FindKeyMode::GE && k == key {
return Ok(Some(Item {key: k, value: v}))
} else if mode == FindKeyMode::LT && k == key {
// prev
if idx > 0 {
return Ok(Some(leafnode.items[idx-1].clone()));
} else {
// use prev
if let Some(addr) = prev {
return Ok(Some(get_last_item(tree, addr)?));
} else {
return Ok(None);
}
}
} else {
// next
if let Some(item) = leafnode.items.get(idx+1) {
return Ok(Some(item.clone()));
} else {
// use next
if let Some(addr) = next {
return Ok(Some(get_first_item(tree, addr)?));
} else {
return Ok(None);
}
}
}
},
None => {
// same as above, but this can only happen if the root node is a leaf
if mode == FindKeyMode::LT || mode == FindKeyMode::LE {
return Ok(None);
} else {
// return the first item in tree if it exists
return Ok(leafnode.items.get(0).map(|x|x.clone()));
}
},
}
},
}
}
}
impl<F: Fn(Key) -> Key> Iterator for RangeIter<'_, F> {
fn range_valid<T: Ord>(start: Bound<T>, end: Bound<T>) -> bool {
match (start, end) {
(Bound::Included(x), Bound::Included(y)) => x <= y,
(Bound::Excluded(x), Bound::Included(y)) => x < y,
(Bound::Included(x), Bound::Excluded(y)) => x < y,
(Bound::Excluded(x), Bound::Excluded(y)) => x < y, // could technically be empty if "y = x+1", but we can't check
(_, _) => true, // one of them is unbounded
}
}
impl<'a, 'b> Iterator for RangeIter<'a, 'b> {
type Item = Item;
// for now we just silently stop when we encounter an error, maybe that isn't the best solution
fn next(&mut self) -> Option<Item> {
if self.leaf.is_none() && self.nodes.len() == 0 {
// first item
// finding the first item is a bit tricky
// if there is a lower limit, the B+ tree only allows us to either find the item
// or the previous one if there is no exact match; in the latter case, go one further
let result = if let Some(lim) = self.lower_limit {
let first_res = self.move_down_and_get_item_or_previous(self.tree.root_addr_log, lim);
if let Some(item) = first_res {
if item.key == lim {
// found exactly the limit, that's the easy case
Some(item)
} else {
// found a previous item; so we want the next one
self.next()
}
} else {
// did not find an item, so everything must come after lower limit
// just get the first
self.move_down_and_get_first_item(self.tree.root_addr_log)
}
} else {
// there is no lower limit, so also just get the first
self.move_down_and_get_first_item(self.tree.root_addr_log)
};
result.filter(|item|self.upper_limit.is_none() || item.key < self.upper_limit.unwrap())
} else if self.leaf.is_none() {
// already through the iterator
if !range_valid(self.start.as_ref(), self.end.as_ref()) {
return None;
} else {
let height = self.indices.len(); // must be at least 1
let leaf = self.leaf.as_ref().unwrap();
self.indices[height-1] += 1;
if let Some(item) = leaf.items.get(self.indices[height-1]) {
// there's a next item in the same leaf
if self.upper_limit.is_none() || item.key < self.upper_limit.unwrap() {
return Some(item.clone());
} else {
return None;
}
} else if height == 1 {
// the tree has height 1 and we're through the (only) leaf, there's nothing left
return None;
} else {
// try to advance in one of the higher nodes
self.leaf = None;
self.indices.pop();
let mut level = height - 2;
// go up until we can move forward in a node
let node_addr = loop {
let node = &self.nodes[level];
self.indices[level] += 1;
if let Some(blockptr) = node.children.get(self.indices[level]) {
break blockptr.ptr;
} else {
if level == 0 {
return None;
}
self.indices.pop();
self.nodes.pop();
level -= 1;
}
};
// first first item under this node
return self.move_down_and_get_first_item(node_addr)
.filter(|item|self.upper_limit.is_none() || item.key < self.upper_limit.unwrap())
}
}
let (start_key, mode) : (Key, FindKeyMode) = match &self.start {
&Bound::Included(x) => (x, FindKeyMode::GE),
&Bound::Excluded(x) => (x, FindKeyMode::GT),
&Bound::Unbounded => (ZERO_KEY, FindKeyMode::GE),
};
// FIX: proper error handling
let result = find_closest_key(self.tree, start_key, mode)
.expect("file system should be consistent (or this is a bug)");
if let Some(item) = &result {
self.start = Bound::Excluded(item.key);
}
let end_filter = |item : &Item| {
match &self.end {
&Bound::Included(x) => item.key <= x,
&Bound::Excluded(x) => item.key < x,
&Bound::Unbounded => true,
}
};
result
.filter(end_filter)
.map(|item|item.clone())
}
}

View File

@ -73,6 +73,8 @@ impl Key {
}
}
pub const ZERO_KEY: Key = Key {key_id: 0, key_type: ItemType::Invalid, key_offset: 0};
#[allow(unused)]
#[derive(Debug,Clone)]
pub enum Value {